
Rules for the Rulemakers: Asymmetric Information and the

Political Economy of Bene�t-Cost Analysis�Online Appendix

David Besanko� Avner A. Krepsy Clair Yangz

January 5, 2024

1 Introduction

This appendix contains seven sections. Section 2 proves that a cheap talk equilibrium in our model does not

exist. Section 2 characterizes the equilibrium when we relax Assumptions 2 and 3 in the paper and allow for

a positive direct cost for conducting a BCA. Section 4 presents and analyze a continuous-type version of our

model. Section 5 presents an alternative model of BCA with bias. Section 6 presents the full commitment

solution. Section 7 contains all proofs.

2 Does a cheap talk equilibrium exist?

In the model presented in the paper, we assume that the regulator cannot communicate with the executive

about the bene�t of the proposed rule. We now consider relaxing this assumption by allowing the regulator to

decide on a messaging strategy � : B ! �(M), where B is the set of possible bene�ts andM is an arbitrary

message space. The executive can now condition its approval rule �(�; �) on the message it receives, in

addition to any other information the executive has access to (such as the results of a BCA). As it turns

out, the following lemma, which applies to all subgames in our analysis, states that this message must be

uninformative; there is no equilibrium in any subgame in which the executive changes its acceptance decision

on a message by the regulator. That is, we do not have a �cheap talk�equilibrium in the sense of Crawford

and Sobel (1982).
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Lemma OA1 There does not exist an equilibrium of the regulatory proposal subgame in which the regulator

proposes regulations of types B0 and B00 with messages �0 = �(B0) and �00 = �(B00) such that the executive�s

equilibrium approval probability �0 = �(�0; �) 6= �(�00; �) = �00.

The intuition is straightforward: as long as �B > C (which is a necessary condition for the regulator to

propose a new rule), the regulator�s expected bene�t increases in the approval probability. Thus, conditional

on proposing, the regulator will send whatever message it needs to send to ensure that the probability of

approval is as high as possible. As far as the executive is concerned, then, there is nothing meaningful to

infer from messages sent by the regulator about the rule�s social bene�ts.

3 Relaxing assumptions in the two-type model

In this paper, we characterized the equilibrium in our two-type model under Assumption 2 (� > C
BL +

kr
1�q
BL ),

and later in the paper, we stated (but did not prove) the equilibrium under a BCA mandate when we replaced

Assumption 2 with Assumption 3 (� 2
�
C+kr
BL ; C

BL +
kr
1�q
BL

�
). In this section, we characterize the equilibrium

for all values of �. In addition, we allow for the BCA to have either a zero or a positive cost borne by both

the executive and the regulator. We denote that cost ka, and we let k = kr + ka. Since ka � 0, k � kr.

3.1 Prohibited BCA

Let us begin with the case of a BCA prohibition. If � < C+kr
BH , neither type of regulator would bene�t

from proposing, even if the executive were to approve the new rule with certainty.1 In this case, it is

straightforward to show that there is a unique equilibrium with ��n = (0; 0) and �
�
n = 1.

2

If � 2
�
C+kr
BH ; C+kr

BL

�
, we have the following.

Proposition OA1 If Assumption 1 in the paper holds and � 2
�
C+kr
BH ; C+kr

BL

�
, then when BCA is prohibited,

the unique equilibrium is ��n = (1; 0) and �
�
n = 1.

This is a case in which the executive and the regulator are aligned in that the regulator proposes in

precisely those circumstances in which the executive wants it to propose. There is essentially no agency

problem between the executive and the regulator, and it is as if there is symmetric information between the

two parties.

1When � = C+kr
BH there are in�nitely many equilibrium in which a high-bene�t regulator randomizes between proposing

and not proposing, a low-bene�t regulator does not propose, and the regulator approves a proposal with probability one. In
the remainder of this section, we ignore knife-edge cases such as this.

2As in the paper, we assume employ the D1 re�nement throughout this section. D1 implies that ��n = 1 is the unique
approval probability.
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If � > C+kr
BL (which is an implication of Assumption 2 in the paper), then Proposition 1 from the paper

holds. Summing up this analysis, then, as we move from � < C+kr
BH to � 2

�
C+kr
BH ; C+kr

BL

�
to � > C+kr

BL , we

move from a situation in which the regulator does not propose under any circumstances to one in which

only a high-bene�t regulator proposes (and thus proposes in exactly the circumstances the executive wants

the regulator to propose) to one in which both types of the regulator propose (with a high-bene�t regulator

proposing with certainty and a low-bene�t regulator proposing with a probability less than one if the executive

is regulation averse (� < �n) and probability one if the executive is regulation sympathetic (� > �n).

3.2 Mandated BCA

Analogous to the BCA-prohibited case, if � < C+k
BH , neither type of regulator would bene�t from proposing,

even if the executive were to approve the new rule with certainty.

If � 2
�
C+k
BH ; C+k

BL

�
, we can establish

Proposition OA2 If Assumption 1 in the paper holds and � 2
�
C+k
BH ; C+k

BL

�
, the unique equilibrium is

��m = (1; 0) and �
�
m = (1; 1).

In this case, the set of regulations the executive wants to approve are the same set. Therefore, under

no circumstances will the regulator propose a regulation that the executive does not want to accept, so

the signal given by BCA does not change the executive�s certainty that it wants to approve all proposed

regulations.

Next, we prove a more general version of Proposition 2 in the paper that allows for either Assumption 2

or Assumption 3 to hold. In the statement of the proposition, �m � C
BL +

kr
1�q
BL , so whether Assumption 2 or

Assumption 3 holds depends on whether � > �m or � 2
�
C+k
BL ; �m

�
.

Proposition OA3 If Assumption 1 in the paper holds and � > C+k
BL , There exists an equilibrium in the

regulatory proposal subgame. Assuming that equality conditions between parameters are not satis�ed, this

equilibrium is unique.3

(1) If � � �m(b
L) = C

E[ eBjeb=bL] = [p(1�q)+(1�p)q]C
p(1�q)BH+(1�p)qBL , then the equilibrium is ��m = (1; 1), �

�
m = (1; 1).

(2) If � � �m(b
L) and � � �m, then the equilibrium is ��m = (1; �

�
m(B

L)), ��m = (1; �
�
m(b

L)), where

��m(B
L) =

p(1� q)(�BH � C)
(1� p)q(C � �BL) 2 (0; 1];

��m(b
L) =

k

q(�BL � C) �
1� q
q

2 (0; 1]:

3 If any of the below weak inequalities are satis�ed with equality, we get multiple equilibria.
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(3) If � 2 [�m(bH); �m(bL)] and � � �m, where �m(b
H) = C

E[ eBjeb=bH ] = [pq+(1�p)(1�q)]C
pqBH+(1�p)(1�q)BL < �m(b

H),

then the equilibrium is ��m = (1; 1), �
�
m = (1; 0).

(4) If � � �m(b
H) and � � �m, then the equilibrium is ��m = (1; �

�
m(B

L)), ��m = (�
�
m(b

H); 0), with

��m(B
L) =

pq(�BH � C)
(1� p)(1� q)(C � �BL) 2 (0; 1];

��m(b
H) =

k

(1� q)(�BL � C) 2 (0; 1]:

Cases 1, 3, and 4 correspond to the Proposition 2 in the paper. Case 2 corresponds to the characterization

of the equilibrium when Assumption 3 holds. The proof of Proposition OA3 in the appendix to this document

is identical to the proof of Proposition 2 in the paper, but it also presents the proof of the equilibrium in

case 2, which is not presented in the paper.

3.3 Comparing mandated BCA to prohibited BCA

When Assumption 1 in the paper holds and � > C+k
BH and ka > 0, the expression for �E(�; �) = EUEm�EUEn

involves nine cases instead of the four that arise when Assumption 2 holds. (We write �E(�) as dependent

on � as well as � to emphasize that the gain or loss to the executive from using BCA depends on the

regulator�s welfare weight as well as the executive�s.) These cases are summarized in Figure OA1.4 Table

OA1 shows the expressions for �E(�; �), while Table OA2 presents the decomposition terms for each of the

nine cases. In Table OA2, the phrase �severe misalignment� refers to � > �m (the case analyzed in the

paper); �modest misalignment� refers to � 2
�
C+k
BL ; �m

�
(Assumption 3 in the paper); � BCA alignment�

refers to � 2
�
C+kr
BL ; C+k

BL

�
; and �full alignment�refers to � 2

�
C+k
BH ; C+kr

BL

�
. In the BCA alignment case, a

positive direct cost of a BCA makes it welfare-reducing for a low-bene�t regulator to propose with a BCA

whereas a low-bene�t regulator would be willing to propose with a high enough approval probability when

BCA is not used.

3.4 Summing up

Expanding the range of � beyond that implied by Assumption 2 results in three changes in the analysis.

First, it opens up the possibility that the regulator�s interests are aligned with the executive�s when BCA is

mandated or prohibited, i.e., a low-bene�t regulator would not propose but a high-bene�t regulator would.

In this case, the unique equilibrium with or without a BCA mandate entails the regulator behaving exactly

4The �gure assumes that C+k
BH < C+kr

BL , which holds provided (as seems natural) ka is small in comparison to kr . When
C+k
BH � C+kr

BL , cases 7 and 8 no longer arise and case 9 holds for all � 2
�
C+k
BH ; C+k

BL

�
.
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as the executive most prefers. In this case, (case 9 in Figure OA1 and Tables OA1 and OA2) BCA adds

nothing except possibly for a direct cost, as can be seen in Table OA1. This case of full alignment is useful

as a theoretical benchmark, but its empirical relevance seems questionable. The literature (cited in the

paper) emphasizing the role of executive branch gatekeepers (like OIRA) and BCA in resolving principal-

agent problems between regulatory agencies and the executive administration suggests that full alignment

is unlikely to be the norm.

Second, extending the range of � creates the possibility that the regulator would propose in the manner

the executive most prefers under a BCA mandate, but does not do so without BCA. In these cases (cases

7 and 8 in Tables OA1 and OA2) BCA can potentially be valuable to the regulator, not because of its

informational content, but because its direct cost ka works to screen the types of the regulator. This case is

a theoretical curiosity, but as with the case of full alignment, not empirically relevant. The idea that the cost

of a BCA (which is likely to be small as a compared to other proposal costs) operates by itself to discipline

the behavior of regulatory agencies, is dubious.

Third, extending the range of � to that speci�ed in Assumption 3 in the paper (� 2
�
C+k
BL ; �m

�
) opens up

the possibility of a less severe agency problem than the one featured in the paper. This assumption has some

bite. As discussed in the paper, and as can be seen from Table OA1 for the case of ka = 0, �E(�; �) > 0

for all � 2
�
C
BH ;

C
BL

�
. Thus, as long as its direct cost is su¢ ciently small, the executive bene�ts from a

BCA mandate. Thus, while a BCA mandate can harm the executive when the agency problem between the

regulator and the executive is su¢ ciently severe in the sense of Assumption 2 (even if BCA is costless), this

is not the case when the agency problem is somewhat less severe.

Despite this point, we feature the case of � > �m in the paper because we believe it likelier to obtain in

practice than the case of � 2 (C+k
BL ; �m). The length of the range is �m� C+k

BL = qk
(1�q)BL . When q is bounded

away from one, and when k is small relative to BL, this range will be small. As we argue in Section 4.4 when

we discuss parameterizing the continuous-type version of our model, both are likely to be the case. To put

numbers to the discussion, if BL = 200; C = 150; BH = 700; kr = 4, and ka = 0:002, (which are numbers

similar to the baseline parameterization of the continuous-type model) then for a reasonably informative

BCA signal of q = 0:75, C+k
BL = 0:77 and �m = 0:83. As such, the interval of �modest misalignment� is

small. Thus, while the cases embodied by Assumption 3 yields interesting and important di¤erences relative

to those implied by Assumption 2, they occupy a relatively small portion of parameter space unless the BCA

is extremely informative.
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4 Continuous-type model

This section presents a continuous-type version of our model. We maintain the assumption that there is

direct cost ka of a BCA and, as in the previous section, we let k = kr + ka � kr.

Throughout this section we distinguish between, on the one hand, lemmas and propositions that are

established through formal arguments and, on the other hand, results. A result either establishes a possibility

through a numerical example or summarizes a regularity through a systematic exploration of the parameter

space.

We assume the executive�s prior is that B is a normally distributed random variable eB � N(B0; �0),

with associated density, distribution, and reverse distribution functions f0(B) = 1
�0
 
�
B�B0

�0

�
, F0(B) =

	
�
B�B0

�0

�
, and bF0(B) = 1 � F0(B) = b	�B�B0

�0

�
, where  (�), 	(�), and b	(�) = 1 � 	(�) are the density,

distribution, and reverse distribution functions of the standard normal distribution.

BCA reveals a possibly noisy signal eb = B + �be"b of B to the executive, where �b � 0 and e"b � N(0; 1).

Given B, the density, distribution, and reverse distribution functions of eb are 1
�b
 
�
b�B
�b

�
, 	

�
b�B
�b

�
, andb	� b�B�b � respectively.

An executive�s ex ante posture toward regulation is re�ected by bF0 �C� �, which we de�ne as the executive�s
regulation-sympathy index. This index is the executive�s ex ante probability of facing a rule it would like

to accept. Accordingly, we characterize an executive as regulation neutral/averse/sympathetic if bF0 �C� � =
/ < / > 0:5 or, equivalently, if � = / < / > C

B0
. Analogously, we let bF0 �C+k� �

serve as the regulator�s

regulation-sympathy index, and call the regulator regulation neutral/averse/sympathetic if bF0 �C+k� �
= /

< / > 0:5. Because the regulator does not share the executive�s priors (since it knows B), this index can be

interpreted as the executive�s prior of the regulator�s sympathy to new rules.

Symmetric information benchmark We derive speci�c results regarding the equilibrium outcomes

for each subgame in the remainder of this section, but before that it is useful to present the symmetric

information benchmark. If the executive knew B, it would approve a rule proposed by the regulator if

�B � C � kr � �kr, or equivalently B � C
� . The executive�s approval function is therefore IfB � C

� g.

Given this, the regulator proposes a new rule if IfB � C
� g [�B � C]� kr � 0. If � � C

C+kr
�, the regulator

proposes a rule if B � C+kr
� , and the executive would accept it because B � C+kr

� � C
� . In this case, the

regulator refrains from proposing rules with B 2
h
C
� ;

C+kr
�

�
that the executive would have accepted because

they would make the regulator worse o¤. If � < C
C+kr

�, the regulator proposes a rule if B � C
� , and the

executive accepts it. In this case, the regulator refrains from proposing rules with B 2
h
C+kr
� ; C�

�
that it

would bene�t from because it knows the executive will reject them. Viewed ex ante, the executive�s expected

8



welfare in the symmetric information benchmark is

EUEf =

Z 1

B�
f

[�x� C � kr]f0(x)dx; (1)

where B�f = max
n
C
� ;

C+kr
�

o
.

4.1 Regulatory proposal subgame: prohibited BCA

The only inference the executive can make about the regulator�s private information B when the executive

prohibits BCA comes from the event that the regulator proposes a rule in the �rst place. Suppose, then, the

regulator conjectures that the executive�s approval probability is �n 2 (0; 1].5 or

B � Bn(�n) �
kr
��n

+
C

�
: (2)

We refer to Bn(�n) as the pivotal bene�t.

If the executive conjectures a pivotal bene�t Bn, the executive updates its belief over B as eBj eB � Bn.

The executive�s acceptance probability �n(Bn) is then given by

�n(Bn) =

8>>>><>>>>:
1 if �E[ eBj eB � Bn]� C � 0

2 [0; 1] if �E[ eBj eB � Bn]� C = 0

0 if �E[ eBj eB � Bn]� C � 0

; (3)

where E[ eBj eB � Bn] = B0 + �0h
�
Bn�B0

�0

�
; and h(z) =  (z)b	(z) is the hazard function for the standard

normal distribution. We note that the structure of our model is what Tirole (2016) calls an anti-lemons

environment in that a proposal by the regulator makes the executive�s posterior expectation higher than its

prior expectation. In this sense, the regulator plays a potentially valuable screening role for the executive.

An equilibrium is a strategy pair fB�n; ��ng such that the regulator�s proposal strategy and the executive�s

approval strategy are each other�s best responses, i.e., B�n = Bn(�
�
n) and �

�
n = �n(B

�
n). The next proposition

formally characterizes the equilibrium.

Proposition OA4 If BCA is prohibited in the regulatory process, an equilibrium in the regulatory proposal

subgame, fB�n; ��ng, exists and is unique up to changes of measure zero.6 In that equilibrium, the regulator

proposes a new rule if B > B�n and does not propose a new rule if B < B�n. The regulator accepts the proposed

5As in the main text, we continue to use as our equilibrium concept (weak)perfect Bayesian equilibrium, equipped with the
D1 re�nement, ensuring that a proposal is on path and therefore the executive uses Bayes�rule to update its beliefs.

6That is, any two equilibria are identical modulo the regulator�s behavior when B = B�n.
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rule with probability ��n and rejects it with probability 1 � ��n. (1) For � < ��n(�) � C

B0+�0h

 
C+kr
�

�B0
�0

! 2

(0; C
C+kr

�), the equilibrium is given by

B�n =
C

�
+

kr
���n

2 (C + kr
�

;
C

�
) (4)

��n 2 (0; 1);

where ��n is the solution for � to

E

� eBj eB � C

�
+
kr
��

�
� C

�
= 0: (5)

(2) For � � ��n(�), the equilibrium is given by

B�n =
C + kr
�

(6)

��n = 1: (7)

We note that case 1 in Proposition OA4 is analogous to case 1 in Proposition 1 in the paper which

characterizes the equilibrium in the prohibited-BCA subgame in the two-type model. Case 2 in Proposition

OA4 here encompasses case 2 in Proposition 1 of the two-type model.7 In both models, an executive that

places a su¢ ciently high weight on the bene�ts of the prospective rule will always approve a proposed

regulation. In particular, Proposition OA4 implies that in the continuous-type model when the regulator�s

preferences are the same as the executive�s, � = �, the executive approves the proposed rule with certainty.

To understand why, in the continuous-type model, an executive with � < ��n(�) might reject a pro-

posal, suppose the regulator believed the executive would approve any proposed rule with certainty. The

regulator would propose a rule if B � C+kr
� , and the executive�s expected net bene�t from approving the

regulation would be �E
h eBj eB � C+kr

�

i
�C. We show in the proof of the proposition that when � < ��n(�),

�E
h eBj eB � C+kr

�

i
� C < 0. By rejecting rules with positive probability, the executive can entice the regu-

lator to forego proposing lower-quality rules, increasing the executive�s expected payo¤. Thus, the executive

hurts its interests if it approves any rule proposed by the regulator with certainty.

The executive�s gatekeeper power is limited by its lack of information, leading to three distinct ine¢ cien-

cies relative to the symmetric information outcome, ine¢ ciencies that are directly analogous to those in the

two-type model in the paper: type 1 error from rejecting rules with �B�C > 0, type 2 error from accepting

rules with �B�C < 0, and excess proposal cost from the regulator proposing more types of rules than in the

7Case 2 in Proposition OA4 also encompasses what we refer to in the previous section as the case of full alignment, a case
that arose when we relaxed Assumption 2 in the paper.
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symmetric information case. We can decompose the executive�s deadweight loss� DWLE = EUEf �EUEn � to

illustrate these three sources of ine¢ ciency:

DWLE = EUEf �
Z 1

B�
n

f��n [�x� C]� krg f0(x)dx

= DWLE1 +DWLE2 +DWLE3 , (8)

where

DWLE1 =

Z 1

C
�

�
Ifx � B�fg � ��nIfx � B�ng

�
[�x� C] f0(x)dx (9)

DWLE2 =

Z C
�

�1

�
Ifx � B�ng��n � Ifx � B�fg

�
[C � �x] f0(x)dx (10)

DWLE3 = kr
�
F0(B

�
f )� F0 (B�n)

�
: (11)

DWLE1 , DWLE2 , and DWLE3 are the executive�s welfare losses due to type 1 errors, type 2 errors, and excess

expected proposal costs respectively. These are directly analogous to components of the deadweight loss in

the two-type model.

These deadweight loss components depend on � (holding all other parameters �xed). When � � C
C+kr

�,

Proposition OA4 implies that the equilibrium outcome coincides with the symmetric information benchmark,

so there is no deadweight loss. If � 2
h
��n(�);

C
C+kr

�
�
, DWLE1 = 0 but DWLEi > 0; i = 2; 3. From

Proposition OA4 ��n = 1 and
C

C+kr
� = B�n < B�f =

C
� in this case, so the executive never rejects a proposal

with B > C
� , i.e., it will not make a type 1 error. But it would accept a proposal with B 2 (C+kr� ; C� ), so

the executive could make a type 2 error. And expected proposal costs are excessive because the regulator�s

equilibrium proposal range is greater than the symmetric information range. When � < ��n(�), DWLEi >

0; i = 1; 2; 3. This is because ��n < 1, so a proposed rule with B > C
� could be rejected by the executive, a

type 1 error. A type 2 error can also arise because the pivotal bene�t B�n <
C
� and the approval probability

��n > 0. And the expected proposal cost is excessive because B
�
n < B�f .

Figure OA2 shows the magnitudes of decomposition components for a particular parameterization with

� = 0:25 and other parameters at the baseline levels of our computational analysis. (For these baseline

levels and a discussion thereof, see Table OA3 and the surrounding discussion in Section 4.4.) The no-BCA

equilibrium in this case is B�n = 434:75 and ��n = 0:014. (The graphs bounding the areas for the type 1

and type 2 error are the integrands of DWL1, DWL2, and DWL3.) The welfare loss due to a type 1 error,

DWL1, is substantial. With �0 = 200, there is a high likelihood that the executive rejects proposals that

would it would have bene�tted from. Because ��n is quite close to zero, the welfare loss from a type 2 error,

11



DWL2, is small. The welfare loss from excess proposal cost, DWL3, is non-trivial because the executive�s

prior probability of a rule falling in the range proposed in the prohibited BCA subgame but not under

symmetric information, [B�n; B
�
f ] = [434:76; 600], is sizable, as the mean of the executive�s prior distribution

B0 is 450.

When � < ��n(�), we have the following comparative statics:
@��n
@� > 0, @�

�
n

@� < 0, @B
�
n

@� < 0 and @B�
n

@� = 0.8

Thus, as � decreases ceteris paribus� i.e., as the executive becomes more regulation averse� the regulator

proposes higher quality rules, but the likelihood the executive approves them decreases. Thus a more

regulation-averse executive trades o¤ a higher risk of type 1 error for a lower risk of type 2 error. This

makes sense: a regulation-averse executive is hurt more by approving low-bene�t rules than by failing to

approve high-bene�t rules. Further, as � increases, holding all else �xed, the agency problem between the

executive and regulator worsens, and the executive similarly trades o¤ a higher risk of type 1 error for a lower

risk of type 2 error by lowering the probability of acceptance. This also makes sense: a more regulation-

sympathetic regulator is inclined to propose rules that would hurt the executive, and the lower equilibrium

approval probability disciplines the regulator to some extent, even if it means that the executive may reject

some high-bene�t proposals. Both of these e¤ects have direct analogues in the two-type model that are

demonstrated in the main text; the e¤ect as � changes is discussed in Section 3.1, while the e¤ect as �

changes is demonstrated by moving between Assumptions 2 and 3.

4.2 Regulatory proposal subgame: mandatory BCA

We now turn to mandatory BCA. Throughout, we assume that �b > 0 or ka > 0. That is, the BCA is noisy

or costly or both.9

Suppose the regulator conjectures the executive�s approval probability as a function of the measured

bene�t b is �m(b), and further suppose that �m(�) is believed to be a non-decreasing function of b. As

we show presently, this is indeed how an optimizing executive would behave, so an expectation of a non-

decreasing approval function is con�rmed in equilibrium.10 The regulator�s best response is to propose only

8The comparative statics for ��n are established in the proof of Proposition OA4. The result
@B�

n
@�

< 0 follows from condition

(4). From ((4), (5), and the expression for a lower-truncated normal expectation, we have B0+�0h
�
B�
n�B0
�0

�
= C

�
, from which

it directly follows that @B�
n

@�
= 0.

9The case of perfect and costless BCA (�b = 0; ka = 0) is straightforward: it enables the executive to replicate the symmetric-
information equilibrium, thus eliminating the deadweight loss (8). The executive could never be worse o¤ mandating perfect
and costless BCA. In particular, from the analysis in the previous section, when � � C

C+kr
�, the regulator is neither better o¤

nor worse o¤ mandating perfect and costless BCA. When � < C
C+kr

�, it is strictly better o¤.
10An expectation by the regulator that the executive will be more likely to approve proposals with higher measured bene�ts

is also compelling for other reasons. It is consistent with an agency believing that executive will not behave arbitrarily in the
face of hard evidence from a BCA. An expectation of a greater likelihood by the executive branch to approve proposals with
higher measured bene�ts would also be natural if the regulator believed the executive branch was averse to court challenges of
its decisions.
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when Eeb
h
�m(eb)jBi [�B � C]� k � 0.

Suppose that Eeb
h
�m(eb)jBi > 0.11 This implies that for B > C

� (which is necessary for the regulator to

propose a new rule), Eeb
h
�m(eb)jBi [�B � C] is strictly increasing in B because a higher B shifts the distri-

bution of eb in the sense of �rst-order stochastic dominance, and thus the expectation Eeb h�m(eb)jBi is non-
decreasing inB. Further, limB!1Eeb

h
�m(eb)jBi [�B � C]�k =1 and limB!C

�
Eeb
h
�m(eb)jBi [�B � C]�k =

�k < 0. Thus, the intermediate value theorem implies that there exists a unique pivotal bene�t Bm > C
�

such that Eeb
h
�m(eb)jBmi [�Bm � C] � k = 0, and the regulator�s best response is to propose only when

B � Bm.

For an arbitrary �m 2 (0; 1] let

Bm(�m) �
C

�
+

k

��m
(12)

be the regulator�s best response function, and for an arbitrary Bm 2 (�1;1), let

�m(Bm) = Eeb
h
�m(eb)jBmi (13)

be the pivotal approval probability, i.e., the expected probability of approval when the pivotal bene�t is

Bm. The best response function Bm(�) is identical to Bn(�) except that it includes k rather than kr. Thus,

Bm(�) � Bn(�) for any �xed �. The key di¤erence between the best response functions �m(�) and �n(�) is

that with no BCA, �n is the unconditional approval probability and does not depend on B, but with BCA,

by contrast, �m(Bm) is the regulator�s expectation of the approval probability of the marginal proposal.

Note that �m(Bm) � Eeb
h
�m(eb)jBi for B > Bm because Eeb

h
�m(eb)jBi is non-decreasing in B.

To characterize the executive�s behavior, if the executive conjectures a pivotal bene�t Bm, then upon

seeing a proposal resulting in a realized measured bene�t b, the executive updates its belief over B as the

posterior distribution of a random variable eBj(b; eB � Bm). Now, eBjb (i.e., not conditioned on eB � Bm) is

a normal random variable with mean

Bm(b) =
�2b

�2b + �
2
0

B0 +
�20

�2b + �
2
0

b; (14)

and variance

�2m =
�2b�

2
0

�2b + �
2
0

: (15)

11This occurs if and only if there exists a set b � R with nonzero measure such that �m(b) > 0 for all b 2 b; i.e., the

executive has a nonzero approval probability for some set of positive measure. This implies Eeb
h
�m(eb)jBi > 0 for all B becauseebjB � N(B; �b) has support over R. As in the prohibited BCA subgame, our solution concept ensures this is the case.
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Thus, with a pivotal bene�t Bm, eBj(b; eB � Bm) is a truncated normal random variable with mean

E[ eBjb; eB � Bm] = Bm(b) + �mh

�
Bm �Bm(b)

�m

�
:

For any realized b and conjectured pivotal bene�t Bm, the executive�s optimal approval behavior is given by

�m(b; Bm) =

8>>>><>>>>:
1 if �E[ eBjb; eB > Bm] > C

2 [0; 1] if �E[ eBjb; eB > Bm] = C

0 if �E[ eBjb; eB > Bm] < C

: (16)

That optimal approval behavior can be shown to have simple form: if the pivotal bene�t Bm is su¢ ciently

small (in particular, less than C
� ), the executive approves a proposal with a measured bene�t that exceeds

a measured bene�t threshold bTm (that depends on the conjectured pivotal bene�t). If the pivotal bene�t is

greater than or equal to C
� , the executive approves the proposal irrespective of its measured bene�t. We

state this formally as follows.

Lemma OA2 Suppose the executive conjectures a pivotal bene�t Bm 2 (�1;1) and faces a measured

bene�t b 2 (�1;1). The executive�s optimal approval rule �m(b; Bm) takes the form

�m(b; Bm) =

8>>>><>>>>:
1 if b > bTm(Bm)

2 [0; 1] if b = bTm(Bm)

0 if b < bTm(Bm)

; (17)

where bTm(Bm) is the executive�s measured bene�t threshold. This approval rule is unique over b 6= bTm(Bm).

For Bm < C
� , b

T
m(Bm) 2 (�1;1) exists and is unique and is the solution for b to the equation

Bm(b) + �mh

�
Bm �Bm(b)

�m

�
=
C

�
: (18)

For Bm � C
� , b

T
m(Bm) = �1, i.e., the executive will approve the proposed rule no matter what the result of

the BCA.12

For Bm < C
� , we have

dbTm(Bm)

dBm
= � 1

B
0
m(b

T
m(Bm))

h0(
Bm�Bm(bTm(Bm))

�m
)

1� h0(Bm�Bm(bTm(Bm))
�m

)
< 0; (19)

12We note that Lemma OA2 validates the regulator�s conjecture that the approval function is nondecreasing in b and nonzero
over a set of positive measure.
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since dBm

db > 0 and h0(z) 2 (0; 1) for all z < 1.13 Thus, the larger the pivotal bene�t, the smaller is the

measured bene�t threshold, and if the executive expects the pivotal bene�t to be at least C
� , the executive

approves the new rule with certainty. In addition, using (18), for a given pivotal bene�t, the measured

bene�t threshold decreases in the executive�s welfare weight:

@bTm(Bm; �)

@�
=

� C
�2

B
0
m(b

T
m(Bm; �))

h
1� h0(Bm�Bm(bTm(Bm;�))

�m
)
i < 0: (20)

Further, it is straightforward to prove limBm!C
�
bTm(Bm) = �1 and limBm!�1 bTm(Bm) =

�2b+�
2
0

�20

C
��

�2b
�20
B0.14

The equilibrium of the regulatory proposal subgame with BCA is a triple fB�m; ��m; b�mg simultaneously

satisfying Lemma OA2, (12), and (13) where, in (13),

�m(Bm) = Eeb
h
�m(eb; Bm)jBmi = b	�bTm(Bm)�Bm

�b

�
: (21)

Proposition OA5 If BCA is utilized in the regulatory process, an equilibrium in the regulatory proposal

subgame, (B�m; �
�
m; b

�
m), exists and is unique up to changes of measure zero. In that equilibrium, the regulator

proposes a new rule if B > B�m and does not propose a new rule if B < B�m. The executive accepts the proposed

rule if the measured bene�t b exceeds a measured bene�t threshold b�m and rejects the proposed rule otherwise.

(1) For � < ��m(�) � C
C+k� 2 (0; �), the equilibrium is given by

B�m = Bm(�
�
m) �

C

�
+

k

���m
2
�
C + k

�
;
C

�

�
: (22)

��m = �m(B
�
m) = b	�bTm(B�m)�B�m�b

�
2 (0; 1): (23)

b�m = bTm(B
�
m); (24)

where, recall, bTm(Bm) is the unique solution for b to (18) and �
�
m is the approval probability when B = Bm.

13 It is well known that h0(z) > 0. The proof that h0(z) < 1 for all z 2 (�1;1) is presented as part of the proof of Lemma
OA2.

14The �rst limit is established in the proof of Lemma OA2. The second limit follows because when Bm ! �1, the truncated
mean is simply the untruncated posterior mean, Bm(b). The measured bene�t threshold then solves Bm(b) = C

�
, yielding the

stated limit.
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(2) For � � ��m(�), the equilibrium is given by

B�m = Bm(�
�
m) �

C + k

�
� C

�
:

��m = 1:

b�m = bTm(B
�
m) = �1:

In contrast to when BCA is not used and the equilibrium likelihood of approval is constant, the equilib-

rium likelihood of approval with mandatory BCA, b	� b�m�B�b

�
, increases in the underlying bene�t, and this

probability approaches one as B approaches 1. This means that the potential exists for BCA to make the

executive a more e¢ cient gatekeeper by reducing the risk of a type 1 error when it matters most� for new

rules with a high B.

In the two-type model, if Assumption 2 was extended to include a non-negative direct cost of a BCA, ka,

then � > C+k
BL . Because � < C

BL in the two-type model, if would follow that � < C
C+k� = ��m(�). Thus, the

condition for part 1 of Proposition OA5 are comparable to those for Proposition 2 in the paper. Part 2 in

Proposition OA5, on the other hand, does not have a counterpart in the two-type model in the paper. This

is because Assumptions 1 and 2 in the main paper limit how close � and � are to each other.15 Still, part

1 of Proposition 2 in which a su¢ ciently large � (i.e., � � �m(b
L)) implies that both types of the regulator

propose, and the executive approves a proposal with certainty irrespective of the results of the BCA, is very

much in the spirt of part 2 of Proposition OA5. Parts 2 and 3 of Proposition 2, in which the approval

probability depends on the outcome of the BCA are in line with part 1 of Proposition OA5, which presents

an analogous result.

When � < ��m(�), we can use (22) and (23) to establish comparative statics results with respect to the

executive�s welfare weight:

@��m
@�

=
��1b

b	0 @bTm@�
1 + ��1b

b	0 h @bTm@Bm
� 1
i
k
� (�

�
m)

�2
> 0

(since b	0 < 0, @bTm@Bm
< 0, and @bTm

@� < 0), and thus from (12) and (19) dB
�
m

d� < 0. Analogous to when BCA is not

used, a decrease in the executive�s welfare weight increases the pivotal bene�t and decreases the likelihood

of approval of the marginal proposal. However, the sign of @b
�
m

@� is ambiguous: from (20) a lower � increases

bTm, which works to increase b
�
m, but a lower � also increases the equilibrium pivotal bene�t, which from (19)

decreases bTm, working to decrease b
�
m. Thus, a more regulation-averse executive might have a more lenient

BCA threshold in equilibrium.

15However, if we relax Assumption 2 as we do in the previous section of this appendix, then part 2 of Proposition OA5
becomes comparable to the case of full alignment discussed in that section.

16



The value to the executive from mandatory BCA is

EUEm � EUEn =
Z 1

B�
m

�b	�b�m � x
�b

�
[�x� C]� k

�
f0(x)dx�

Z 1

B�
n

f��n [�x� C]� krg f0(x)dx: (25)

As in the two-type model in the paper, we can decompose this value into four components, EUEm �EUEn =P4
i=1�i; where

�1 =

Z 1

C
�

�b	�b�m � x
�b

�
Ifx � B�mg � ��nIfx � B�ng

�
[�x� C] f0(x)dx: (26)

�2 =

Z C
�

�1

�
��nIfx � B�ng � b	�b�m � x�b

�
Ifx � B�mg

�
[C � �x] f0(x)dx: (27)

�3 = [F0 (B
�
m)� F0 (B�n)] kr: (28)

�4 = �ka bF0(B�m): (29)

�1 is the impact of the BCA on the possibility of a type 1 error. If the approval function under BCA is a good

approximation of the executive�s symmetric information approval function IfB � C
� g then b	� b�m�B�b

�
� ��n

over much of the range
�
C
� ;1

�
and the use of BCA bene�ts the executive by reducing the possibility of a

type 1 error, i.e., �1 > 0. However, if b	� b�m�B�b

�
is a poor approximation to IfB � C

� g, then BCA could

increase the cost to the executive from a type 1 error, i.e., �1 < 0.

We further note that if the executive and regulator are aligned, then �1 is unambiguously negative. In

this case, � > maxf��n(�),��m(�)g, and thus by Propositions OA4 and OA5, we have ��n = b	( b�m�B�b
) = 1

for all B (since b�m = �1), and B�m = C+k
� > C+kr

� = B�n � C
� . The type 1 error term then reduces to

�1 = �
R B�

m

B�
n
[�x� C] f0(x)dx. This is negative since �x � C > 0 for all x > C

� and B
�
n � C

� . Essentially,

when the executive and regulator are aligned, the use of BCA does not change the executive�s approval

behavior, but it chokes o¤ proposals that the executive would have bene�ted from. We note that this e¤ect

does not have a direct analogue in the two-type model: there, if the executive and regulator are aligned, the

regulator will have exactly the same proposal behavior with and without BCA. However, this e¤ect will be

small if the cost of the BCA ka is small (and therefore B�m �B�n = ka
� is small).

�2 re�ects the impact of the BCA on the possibility of a type 2 error. In general, its sign is ambiguous

and depends on two factors: whether ��n > b	� b�m�B�b

�
for B < C

� and whether BCA worsens or improves

selection. For example, suppose � < ��m(�), so that B
�
m < C

� . Further, suppose that BCA improves selection,

i.e., B�n < B�m, and �
�
n > b	� b�m�B�b

�
for B 2 [B�n; C� ). It follows that for B 2 (�1; C� ], �

�
nIfB � B�n; g �b	� b�m�B�b

�
IfB � B�mg (with strict inequality for B > B�n), and thus �2 > 0.

�3 re�ects the impact of BCA on ex ante proposal costs. This has the same sign as B�m � B�n. Finally,
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�4 re�ects the incremental cost of conducting BCA. It is unambiguously negative. �3 and �4 indicate that

BCA can serve a (costly) screening function by potentially reducing proposal costs through the regulator

not proposing lower-quality rules, as well as the informational and strategic role re�ected by �1 and �2.

Figure OA3 shows the decomposition terms when � = 0:25 and all other parameters are at baseline

levels.16 The solid and dashed lines are the integrand of the executive�s expected payo¤ with and without

BCA, respectively� i.e., the ex post welfare as a function of B multiplied by the density at B in the executive�s

prior. Gains from BCA are areas below the dashed line and above the solid line, while losses from BCA are

areas below the solid line and above the dashed line.17 In this particular parameterization, without BCA,

B�n = 434:76, �
�
n = 0:014, and with BCA, B

�
m = 414:82, b�m = 631:53, ��m = 0:364. Figure OA3 illustrates

that BCA reduces the executive�s welfare loss from type 1 errors but increases the welfare loss from type 2

errors. The welfare gain due to reduced type 1 errors in this case occurs primarily because over
�
C
� ;1

�
the

approval probability with BCA, b	� b�m�B�b

�
, is larger than the approval probability without BCA, ��n. Given

the executive�s priors, there is non-trivial probability mass on
�
C
� ;1

�
, so the reduction in the rate of type

1 errors matters a lot.

The welfare loss due to type 2 errors occurs because for a non-trivial range of B below C
� , it continues to

be more likely that the executive will approve a proposed regulation under BCA than without it. However,

in this range the executive would not approve proposals if it knew B, resulting in welfare losses. This occurs

within the part of the executive�s prior with the greatest probability mass. On top of that, BCA worsens

selection, so there is a wider range of B over which type 2 errors could occur. This worsening of selection

also makes �3 negative, as represented by the thin trapezoid below the horizontal axis between 414.82 and

434.76. The loss from �4 cannot be easily discerned from the graph because ka is so small, but it is a thin

band along the length of the solid line.

Overall, Figure OA3 illustrates a case in which the welfare gain from reduced type 1 error under a

mandated BCA more than o¤sets the welfare losses from increased type 2 error, increased proposal costs,

and the direct cost of the BCA. Indeed, in this example, EUEm � EUEn = 4:91 > 0.

Summing up, the discussion above provides intuition about conditions under which the executive derives

positive value from mandatory BCA:

� The approval function with BCA, b	� b�m�B�b

�
, is larger than the approval function without BCA, ��n,

over [C� ;1), reducing the welfare loss from type 1 errors.

� The approval function with BCA is smaller than the approval function without BCA over (�1; C� ],
16See Table OA3.
17Or, in the case of �3, an area left of the dashed line and right of the solid line would represent a gain from BCA, while an

area right of the dashed line and left of the solid line (as in Figure OA3) would represent a loss from BCA.
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reducing the welfare loss from type 2 errors.

� BCA improves selection, B�m > B�n, reducing the welfare loss from type 2 errors, as well as ex ante

proposal costs.

� The direct cost of a BCA is low, and/or selection with a BCA is such that the range of rules proposed

by the regulator has a low probability in the executive�s prior.

Note that with a perfect BCA (i.e., �b = 0), b�m = C
� and b	� b�m�B�b

�
= IfB � C

� g, so a highly precise

BCA should lead b	� b�m�B�b

�
to being a good approximation of IfB � C

� g, both for B � C
� and B < C

� .

However, as in the example in Figure OA3, a noisy BCA can result in the approval function being a worse

approximation to IfB � C
� g than �

�
n when B < C

� but a better approximation when B > C
� , decreasing

the likelihood of type 1 errors but increasing the likelihood of type 2 errors. If the executive is regulation

averse so that �B0 < C (as in Figure OA3), and if �0 is relatively small (smaller than in Figure OA3),

then the most of the prior probability mass will be concentrated in the range of B where type 2 errors

occur. This suggests that any adverse e¤ect of BCA on type 2 errors would be especially meaningful for a

regulation-averse executive with tight priors. Supporting this intuition, if we change the example in Figure

OA3 by reducing �0 from 100 to 40, keeping all other parameter values the same, EUEm �EUEn = �0:00025,

giving the executive a slight preference to not use BCA.

In general, BCA could improve selection or worsen it, as the two panels of Figure OA4 illustrate. The

right-hand panel illustrates equilibria for � = 0:50 and all other parameters set to their baseline levels. In this

case, BCA improves selection. The left-hand panel illustrates equilibria for � = 0:25 and all other parameters

set to their baseline values (the same case illustrated in Figure OA3). Here BCA worsens selection. The

ambiguous e¤ect of BCA on selection is consistent with our �ndings in the two-type model.

We conclude this section by characterizing the executive�s preference for BCA in two special cases:

� � �� the executive gives at least as much weight to bene�ts as the regulator� and � 2
h

C
C+kr

�; �
�
so

there is strong alignment between the executive and the regulator in the weighting of bene�ts. As mentioned

in the previous discussion of the welfare decomposition, Propositions OA4 and OA5 imply ��n = ��m = 1,

b�m = �1, B�m = C+k
� > C+kr

� = B�n >
C
� .

Lemma OA3 If � � � and ka > 0, then EUEm < EUEn , i.e., the executive has a strict preference not to use

BCA.

The intuition is that if the executive were to mandate BCA when � � �, two bad things would happen.

First, there would be a direct cost of the BCA on any regulation it proposes, i.e., �4 < 0. Second, use

of BCA would worsen type 1 errors: as discussed above, �1 < 0 in this case. While there would be no
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additional cost of type 2 errors (�2 = 0) and the proposal cost would go down, i.e., �3 > 0, the increased

cost of a type 1 error outweighs the proposal cost savings:

�1 +�3 = �
Z C+k

�

C+kr
�

[�x� C � kr]f0(x)dx < 0;

as �x� C � kr > 0 for x > C+kr
� when � � �:

Lemma OA4 If � > C
C+kr

� and ka > 0 then EUEm � EUEn is decreasing in �.

In the range � > C
C+kr

� , increases in � do not change the regulator�s proposal strategy, nor do they

change the executive�s acceptance strategy. Therefore, they do not change the expected proposal cost or

BCA cost. However, because the regulator proposes a new rule over a smaller range of potential bene�ts

when BCA is mandated (i.e., B�m > B�n), as � increases, the expected type 1 error from implementing BCA

increases because the executive values the foregone regulation in that range more.

Finally we characterize EUEm �EUEn when � 2 [ C
C+kr

�; �] in a proposition that directly follows from the

previous two Lemmas.

Proposition OA6 Suppose � 2 [ C
C+kr

�; �]. Then the following statements hold: (1) If EUEm � EUEn < 0

when � = C
C+kr

�, then EUEm�EUEn < 0 for all � > C
C+kr

�. (2) If EUEm�EUEn > 0 when � = C
C+kr

�, then

there exists ���(�) 2 ( C
C+kr

�; �) such that EUEm�EUEn > 0 for all � 2 [ C
C+kr

�; ���(�)) and EUEm�EUEn < 0

for all � > ���(�). Further, ���(�) is given by

���(�) =
(C + kr)

h
F0

�
C+k
�

�
� F0

�
C+kr
�

�i
� ka bF0 �C+k� �

B0

h
F0

�
C+k
�

�
� F0

�
C+kr
�

�i
+ �0

h
f0

�
C+kr
�

�
� f0

�
C+k
�

�i :
The intuition of Proposition OA6 is clearest when keeping in mind the decomposition of EUEm � EUEn .

For su¢ ciently large values of �, the regulator never proposes a regulation with bene�ts below C
� in either

subgame; as such, there are no type 2 errors in either subgame, so �2 = 0. In addition, for � > C
C+kr

�,

we have �1 < 0, �3 > 0, and �4 < 0. And as discussed following Lemma OA4, as we increase � in this

range, �1 decreases but �3 and �4 remain constant. Therefore, it is natural that if EUEm�EUEn > 0 for the

lowest value of � in this range (i.e., �1+�3+�4 > 0), there will be a value of � where �3 exactly balances

�1 + �4 and the executive will be indi¤erent between mandating and prohibiting BCA. As � increases

further, however, �1 will decrease while �3 and �4 remain the same, so the executive will unambiguously

prefer to not authorize BCA. This point will come at a value of � less than �.

The upshot of Proposition OA6 and Lemma OA3 is that for any welfare weight � � maxf���(�); C
C+kr

�g�

recognizing that this threshold is strictly less than the regulator�s welfare weight �� the executive prefers
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not to use BCA. The fact that administrations belonging to both U.S. parties have sustained the executive

orders that over the last 40 years have mandated use of BCA suggests that the �normal� case is that the

executive�s welfare weight is below this threshold, which is consistent with presidential administrations that

are more regulation averse than their regulatory agencies.

In the two-type model in the paper, Assumption 1 and 2 imply � < C
C+kr

�. The condition � � C
C+kr

� in

Proposition OA6, which implies a su¢ cient degree of alignment between the executive and regulator, cannot

arise in our two-type model given Assumption 2 in the paper. However, as discussed in Section 3, the analog

to this case does arise when we have what we call �full alignment.�In that case, only a high-bene�t regulator

would propose a new regulation, and the executive would approve any proposal irrespective of the outcome

of the BCA. Given this, the executive would be indi¤erent between mandating and prohibiting BCA when

(as we assume in the paper) BCA is costless, and the executive would prefer not to mandate BCA if the

direct cost ka of the BCA is positive.

4.3 Regulatory proposal subgame: voluntary BCA

As in the two-type model, if BCA is voluntary, the regulator�s decision to propose with versus without BCA

conveys additional information. Three equilibrium con�gurations are possible: (a) a maximally separating

equilibrium in which the regulator proposes with a BCA for B 2 BBCA 6= ;, proposes without a BCA for

B 2 BNO 6= ;, and does not propose for B 2 R n (BBCA [BNO); (b) a partial pooling equilibrium in which

the regulator proposes with a BCA or does not propose at all; or (c) a partial pooling equilibrium in which

the regulator proposes without a BCA or does not propose at all.18 In cases (b) and (c), the executive�s

payo¤s are EUEm and EUEn , respectively, just as in the top and bottom branches of the framework subgame.

Allowing the regulator to voluntarily choose BCA adds a meaningful dimension to the executive�s choice set

only if a maximally separating equilibrium arises.

To explore a maximally separating equilibrium, consider, �rst, the regulator�s incentives. Let �v(b) be

the regulator�s conjectured probability of approval when the executive receives a proposal with a BCA and

the measured bene�t is b, and let �v be the conjectured probability of approval for a proposal without a

BCA. We assume �v(b) is nondecreasing in b and establish presently that this is consistent with optimal

behavior by the executive.

Given the regulator�s conjecture of the executive�s strategy (�v; �v(b)), the regulator proposes without

18We refer to the �rst case as a �maximally separating equilibrium� because it is not a true separating equilibrium; the
executive cannot discern between any two di¤erent values of B. However, this equilibrium o¤ers the most separation possible
to the executive in light of the lack of information available from the regulator�s message established by Lemma 1 in the paper.
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BCA only when

�v(�B � C)� kr � 0; (30)

�v(�B � C)� kr � Eeb
�
�v(eb)jB� (�B � C)� k: (31)

It proposes with a BCA only when

Eeb
�
�v(eb)jB� (�B � C)� k � 0; (32)

Eeb
�
�v(eb)jB� (�B � C)� k � �v(�B � C)� kr; (33)

and it does not propose for B that do not satisfy (30) or (32). These conditions, coupled with optimizing

behavior by the executive, imply that if a maximally separating equilibrium exists, it must have the following

properties.

Lemma OA5 If a maximally separating equilibrium exists, then there must be pivotal bene�ts B�v and B
+
v ,

with B�v < B+v , such that

B�v =
C

�
+

kr
��v

; (34)

B+v =
C

�
+

ka
� (1� �v)

; (35)

where the regulator does not propose if B < B�v , proposes a new regulation without a BCA if B 2 (B�v ; B+v ),

and proposes a new regulation supported by a BCA if B > B+v . (At the boundaries B
�
v and B

+
v , the proposal

strategy must place positive probability only on not proposing/proposing without BCA and on proposing

with/without BCA respectively). Any proposal accompanied by a BCA is approved with certainty, i.e., the

approval rule is �v(b) = 1 for all b 2 (�1;1). The approval probability for a proposal without a BCA is

such that �v 2
�
kr
k ; 1

�
. Further, a necessary condition for a maximally separating equilibrium to arise is

ka > 0.

Lemma OA5 tells us that if a maximally separating equilibrium in the voluntary BCA subgame exists, it

must involve a low range of B over which the regulator does not propose a new regulation, an intermediate

range over which the regulator proposes without a BCA, and a high range over which the regulator proposes

with a BCA. Further, a striking feature of the equilibrium is that BCA plays no role as a noisy signal of the

underlying bene�t. Instead, submission of a BCA with a proposed rule is a signal that the underlying bene�t

is su¢ ciently high, and given that, the executive ignores the measured bene�t provided by the BCA and
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approves the rule with certainty. Intuitively, the executive screens higher B proposals (B � B+v ) from lower

B proposals (B 2 [B�v ; B+v )) by making the (proposal cost, approval probability) allocation (kr+ka; 1) more

attractive than (kr; �v) as illustrated in Figure OA5 which shows the regulator�s welfare UR as a function

of the bene�t B.

If a maximally separating equilibrium exists, it is characterized by pivotal bene�ts B�v and B+v and an

approval probability �v 2 (krk ; 1) such that (34) and (35) hold and

�E

� eBj eB 2 �C
�
+

kr
��v

;
C

�
+

ka
�(1� �v)

��
= C: (36)

If a solution to (36) exists and is such that �v 2 (krk ; 1), then a separating equilibrium exists.

We now establish necessary and su¢ cient conditions for such an equilibrium to exist.

Proposition OA7 Suppose ka > 0 and let

B
min

= min
�2[ krk ;1]

B(�);

B
max

= max
�2[ krk ;1]

B(�);

where

B(�) � E

� eBj eB 2 �C
�
+
kr
��

;
C

�
+

ka
�(1� �)

��
: (37)

For any � 2
�

C
B
max ; C

B
min

�
there exists a separating equilibrium in the voluntary BCA subgame characterized

by a triple, fB��v ; B+�v ; ��vg, satisfying (34), (35), (36), and ��v 2
�
kr
k ; 1

�
. If � < C

B
max or � > C

B
min , then

a maximally separating equilibrium does not exist. A maximally separating equilibrium exists for � = C

B
min

unless C

B
min = ��n(�) or

C

B
min = ��m(�), and a maximally separating equilibrium exists for � = C

B
max unless

C
B
max = ��n(�) or

C
B
max = ��m(�).

Letting �(Bj��v; B��v ; B+�v ) � ��vIfB � B��v g + (1 � ��v)IfB � B�+v g, the value of the executive from

allowing voluntary BCA as opposed to not using BCA is

EUEv � EUEn =
Z 1

B��
v

�
�(xj��v; B��v ; B+�v ) [�x� C]� k

	
f0(x)dx�

Z 1

B�
n

f��n [�x� C]� krg f0(x)dx:

As with mandatory BCA, this welfare di¤erence can be decomposed into four components analogous to

those in (26)-(29), except that the decomposition uses the approval function �(Bj��v; B��v ; B+�v ) instead ofb	� b�m�B�b

�
.
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The possible existence of a maximally separating equilibrium is in contrast with our �nding in the two-

type model that such an equilibrium does not exist. We also showed in Proposition 8 of the paper that in the

general model with ka = 0 is outcome equivalent to an equilibrium in which BCA is prohibited. We see this

phenomenon in our continuous-type model in this appendix. When voluntary BCA in that case gives rise to

a maximally separating equilibrium and the direct cost ka of a BCA is small relative to overall proposal costs,

the approval probability ��v for a proposal without a BCA will be close to one, and �(Bj��v; B��v ; B+�v ) will

either equal one or be close to it for all B > B��v . Under these circumstances, accompanying a proposal with

a BCA is a relatively inexpensive signal for the regulator. Therefore, the executive�s approval probability for

a proposal without a BCA has to be su¢ ciently high in order to induce the regulator not to submit with a

BCA when the underlying bene�t of the regulation is middling. A maximally separating equilibrium in the

voluntary BCA subgame is therefore substantially similar to an equilibrium with ��n = 1 and B
�
n =

C+kr
� in

the prohibited BCA subgame. As such, the executive will tend to implement voluntary BCA only when (a)

��n � 1 but (b) the executive is still subject to a somewhat substantial probability of type 2 error, meaning

it gains more from the small improvement in selection and increased rejection probability than from the

cost of implementing a BCA for a portion of proposals. We present further evidence of this observation

momentarily and show that it only corresponds to a narrow range of parameters.

Finally, notice that there may be multiple maximally separating equilibria. As � increases, the lower

endpoint of the truncation in (37) decreases and the upper endpoint of the truncation increases, meaning

the change in the expression as a whole is unclear. Therefore, there may be multiple values of � 2 (krk ; 1)

satisfying �B(�)� C = 0.

4.4 Computational analysis

To make further headway in analyzing the executive�s equilibrium choice of a regulatory framework we

turn to computational analysis. Computational analysis is useful because key objects in the analysis, such

as the di¤erence in the executive�s welfare with mandatory versus prohibited BCA EUEm � EUEn , do not

have unambiguous signs or comparative statics with respect to underlying parameters. The computational

analysis is based on the baseline parameterization and the associated parameter ranges in Table OA3.

The intent of the computational analysis is not to simulate any particular case study but rather to identify

regularities among empirically plausible values. Consistent with that objective, we note that the baseline

prior bene�t-cost ratio B0

C of 3 to 1 falls within the range of the Environmental Protection Agency�s (2011)

assessment of the bene�t-cost ratio from the Clean Air Act. The ranges of B0 and C trace out bene�t-cost

ratios ranging from 1
3 to 20, the latter value being at the high end of the EPA�s assessment.
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Parameter Baseline values Range
B0, expected net bene�t of proposed rule $450 $150; $300; $450; $600; $1;000
C, expected compliance cost $150 $50; $100; $150; $300; $450
�0, imprecision of executive�s prior beliefs $200 $20; $40; $80; $120; $160; : : : ; $400; $1;000
�b, noisiness of BCA $100 $5; $20; $40; $60; : : : ; $200; $400; $1;000
�, regulator�s welfare weight 1:0 0:40; 0:60; 0:80; 1:00; 1:20
�, executive�s welfare weight 0:25; 0:50 increments of 0:0125 from 0:1 to 1:20
ka, cost of conducting BCA $0:002 $0:002; $0:01; $0:5
kr, cost of developing proposed rule $4 $0:01; $4; $50

Table OA3: Baseline parameterization for computational analysis. All monetary units are in billions.

The baseline value �0 = $200 billion implies moderate uncertainty of the possible e¤ects of the regulation

for the executive. Using the baseline values of B0 and C, it implies that the executive is 95 percent con�dent

that the net social bene�t eB falls between $58 billion and $842 billion. The baseline value �b = 100 implies

a BCA twice as precise as the executive�s prior. It is also broadly consistent with the Monte Carlo analysis

undertaken by National Highway Tra¢ c and Safety Administration (NHSTA) in its bene�t-cost analysis of

the Obama-era fuel economy standards (National Highway Tra¢ c Safety Administration 2011).

The baseline value � = 1 implies that the regulator strives to maximize social welfare, a natural bench-

mark. Given the baseline values of C;B0, �0, and k, a welfare weight � = 1 corresponds to a regulation-

sympathy index of about 0:931, making the regulator solidly regulation sympathetic. We vary � from 0:4

to 1:20, moving the regulator from somewhat regulation sympathetic (regulation-sympathy index of 0:627)

to strongly regulation sympathetic (regulation-sympathy index of 0:946) using baseline values of B0 and C.

The regulator may also be regulation averse using other values of B0 and C in our parameter grid.

By varying � between 0:1 and 1:20, we allow for cases where the executive is more regulation sympa-

thetic than, more regulation averse than, and similarly disposed to regulation as the regulator. We note

that our lower bound of the executive�s welfare weight, � = 0:10, implies an extremely regulation-averse

administration: �xing other parameters at their baseline levels, bF0 �C� � = 7:60 � 10�8, so the executive�s

prior is to reject e¤ectively all regulation. By contrast, at the baseline values � = 0:25 and � = 0:50, the

regulation-sympathy indices are 0:227 and 0:773 respectively. A welfare weight � = 0:25 re�ects a somewhat

regulation-averse, center-right administration, while � = 0:50 is consistent with a regulation-sympathetic,

center-left administration that recognizes the political reality of the need to balance broader societal gains

from regulation with their impact on business.

We set the baseline value of ka to $0.002 billion. In practice, BCAs done by U.S. federal agencies can

take one or two years to complete. (For example, the BCA for the Obama-era fuel economy standards took

roughly two years to complete.) Our baseline value re�ects a total hourly labor cost of $500, incurred over
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4,000 work-hours. However, we also let ka also take on a values of $0.01 billion and $0.5 billion, which would

re�ect hourly labor costs of $2,500 and $125,000 (or, equivalently, hourly labor costs of $500 incurred over

20,000 and 1,000,000 work-hours respectively).

To determine an empirically plausible baseline value of kr, recall that kr re�ects not just direct outlays

by regulatory agencies (which, for a complex new rule like fuel economy standards might be upwards of $1

billion), but also opportunity costs to the regulator of focusing on the development of one particular new

regulation at the expense of other activities. It seems plausible that kr is signi�cantly greater than ka but

still an order of magnitude less than C. Our baseline value of kr = $4 billion (about 2.7 percent of the

baseline value of C) re�ects this intuition. However, we also allow kr to take on a signi�cantly lower value

($0.1 billion) and a signi�cantly higher one ($50 billion) to re�ect our uncertainty about this parameter.

All together, the Cartesian product of the ranges in Table OA3 imply 15,619,500 distinct parameteriza-

tions. We use Julia as the programming language for our computations, and the computations were executed

on the Quest supercomputer cluster at Northwestern University.

We divide the remainder of this section into two parts. We �rst characterize the executive�s optimal

choice of a regulatory framework. We then show how key parameters in the model a¤ect the executive�s

value of mandatory BCA as opposed to no BCA, EUEm � EUEn .19

4.4.1 The executive�s optimal regulatory framework

We begin by observing that voluntary BCA is rarely the optimal choice for the executive.

Result 1 The executive rarely prefers voluntary BCA to a BCA prohibition or mandatory BCA. EUEv >

maxfEUEn ; EUEmg in just 0.026% of parameterizations. Further, in every parameterization where voluntary

BCA is optimal, ��n = 1, i.e., without BCA the executive would approve any rule proposed by the regulator.
20

Although the non-existence of a maximally separating equilibrium in the two-type model is special to that

case, Result 1 highlights that we do not lose much generality with respect to voluntary BCA by featuring

the two-type model in the main paper.

In light of Result 1, we limit the remainder of our discussion to the comparison between prohibited

BCA and mandatory BCA. Table OA4 summarizes this comparison.21 In 71.09% of parameterizations,
19Some of the �gures and statistics presented below integrate over the entire parameter space, e.g. to calculate averages or

quantiles of certain equilibrium values. When doing so, we typically weight di¤erent parameterizations in a uniform manner,
i.e., we do not weight parameterizations with parameters closer to our baseline higher. We do so not because we believe that
the underlying distribution of these parameters is uniform among the points in our parameter grid, but to demonstrate that
our conclusions hold over a wide range of parameter values.

20 In our computational analysis, the case of multiple maximally separating equilibra is rare. Of the 1,201,500 unique
parameterizations relevant for voluntary BCA (fewer than the 15.6 million parameterizations since the equilibrium outcomes of
the voluntary BCA subgame do not depend on �b), in 776,710 parameterizations a maximally separating equilibrium did not
arise, 424,731 had a single maximally separating equilibrium, and just 59 had two maximally separating equilibria.

21 In the last row of Table OA4, the BCA makes the executive a tougher (softer) gatekeeper if the probability of approval
without BCA is greater than (less than) the probability of approval with BCA were the executive to believe the pivotal bene�t
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All parameterizations � < � only
BCA BCA BCA BCA

prohibited mandated prohibited mandated
Percentage of parameterizations 71.09% 28.89% 54.05% 45.91%
mean EUEm � EUEn �$0:13 $3:88 �$0:13 $3:88
mean �1 �$0:015 $0:805 $0:005 $0:805
mean �2 $0:003 $2:339 $0:005 $2:339
mean �3 �$0:004 $0:795 �$0:013 $0:795
mean �4 �$0:113 �$0:055 �$0:130 �$0:055
BCA improves selection? 90.83% 87.75% 80.84% 87.75%
BCA makes executive a tougher gatekeeper? 15.58% 86.70% 32.56% 86.70%
Table OA4: Summary of computations across all parameterizations. All monetary units are billions

EUEn = maxfEUEn ; EUEm; EUEv g, so the executive would prohibit BCA. In 28.89% of the parameterizations

EUEm = maxfEUEn ; EUEm; EUEv g, resulting in the executive mandating BCA. If we restrict attention to para-

meterizations in which the executive is more regulation averse than the regulator, these percentages become

54.05% and 45.91%, respectively.22 There are three notable asymmetries between the parameterizations

giving rise to these two outcomes.

Result 2 The gain from mandatory BCA to the executive when mandating BCA is optimal tends to be much

larger than the loss from mandatory BCA when prohibiting BCA is optimal: when the executive prefers to

mandate BCA, EUEm � EUEn is $3.88 billion on average. When the executive prefers to prohibit BCA,

EUEn � EUEm is $0.13 billion on average.

Result 3 When mandating BCA is optimal, on average, about 60% of the executive�s gain from mandatory

BCA comes from reduced welfare loss from type 2 errors (�2 > 0) and about 21% of the gain comes from

reduced welfare loss from type 1 errors (�1 > 0). When prohibiting BCA is optimal, about 87% of the loss

on average from mandating BCA comes from the direct cost of the BCA itself (�4 < 0).

Result 4 BCA improves selection in about 90% of parameterizations, irrespective of whether the executive

prefers mandating or prohibiting BCA. However, when the executive prefers to mandate BCA, BCA tends

to make the executive a tougher gatekeeper than when the executive prefers to prohibit BCA: in about 86%

of parameterizations in which the executive prefers mandatory BCA, BCA made the executive a tougher

gatekeeper. In about 16% of parameterizations in which the executive prefers that BCA not be used, BCA

made the executive a tougher gatekeeper.

The asymmetry highlighted in Result 2 is akin to the asymmetry identi�ed by Proposition 7 in the main

paper for the two-type case.

remained �xed at B�n, i.e., �
�
n > (<) �m(B

�
n) =

b	� bTm(B�
n)�B

�
n

�b

�
.

22Note that � � � in 36.6% of parameterizations. As Lemma OA3 shows, all of these cases feature EUEn > EUEm.
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The association highlighted in Result 4 between the value of BCA to the executive and its propensity

to make the executive a tougher gatekeeper is consistent with the arguments made by advocates of BCA as

antidote to over-regulation in the years just before Executive Order 12291 was issued. The �nding in Result

3 that the majority of the gains from BCA when it is bene�cial come from reducing welfare losses from type

2 errors is consistent with this perspective. However, it is also noteworthy that not all the welfare gain from

BCA comes from reducing losses from type 2 errors or excessive proposal costs. As Result 3 indicates, about

one-�fth of the gain comes from reduction in welfare losses from type 1 errors. The notion that BCA can

make it more likely that the executive will accept �good�proposals is consistent with our �ndings in the

two-type model and our discussion of that �nding in relationship to Revesz and Livermore (2008).

4.4.2 Determinants of the value of mandatory BCA

We now turn to the impact of speci�c parameters on the executive�s value from mandatory BCA. Overall,

BCA is valuable to the executive only to the extent that the information provided by it is useful in changing

the equilibrium outcome. We focus on the impact of the following parameters: �b, the precision of the

BCA; �0, the precision of the executive�s priors; and the interaction between bF0 �C� � and bF0 �C+k� �
, the

regulation-sympathy indices of the executive and regulator.

Noisiness of the BCA Figure OA6 shows a boxplot of EUEm � EUEn as a function of �b.

Result 5 EUEm � EUEn tends to be larger the more precise the BCA.

Result 5 is intuitive. The noisier the BCA, the less information it conveys. We can see this through a

statistic, �20��2m, that captures the added precision of the BCA� the reduction in variance of the executive�s

distribution of eB that arises from BCA. Notice that @
@�2b
(�20 � �2m) = � �40

�40+2�
2
0�

2
b+�

4
b
< 0. The increase in

imprecision inhibits the executive�s ability to use BCA to help prevent type 1 and type 2 errors.

Imprecision of the executive�s priors Figure OA7 shows a boxplot of EUEm � EUEn as a function of

the standard deviation of the prior distribution, �0.

Result 6 EUEm � EUEn tends to be larger the less precise the executive�s priors about the bene�t of a regu-

lation.

There are two intuitive explanations for this. The more immediate intuition is similar to the one for �b:

looser priors for the executive means that the executive gains relatively more information from BCA. In fact,

an increase in �0 will also make the executive�s posterior distribution after receiving the BCA �m larger, but
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by less than the amount of increase of �0 itself: @
@�20
(�20 � �2m) = 1�

�4b
�40+2�

2
0�

2
b+�

4
b
> 0. As such, an increase

in �0 will increase the value added by the signal from the BCA.

The more subtle intuition is that an increase in �0 �attens the executive�s prior distribution of eB,
increasing the probability of more extreme values of B for which reductions in type 1 and type 2 errors

become more important. Recall from Table OA4 that when the executive tends to prefer BCA, most of its

value is derived from reductions in type 1 and type 2 errors. As �0 increases, more weight is given to very

high and very low values of eB in the executive�s prior. When calculating the executive�s ex ante utility, it is

therefore more important to classify rules on the fringes of the executive�s prior distribution correctly. Thus,

the bene�t of the BCA in reducing type 1 and/or type 2 errors is ampli�ed.

Interaction between the executive�s and regulator�s regulation aversion Figure OA8 shows a

heatmap with the executive�s regulation-sympathy index on the horizontal axis and the regulator�s regulation-

sympathy index on the vertical axis. In developing this map, all parameters vary over their entire ranges. In

the companion Figure OA9, we present the same heatmap, but we �x �b at three values: its baseline value

of 100 and the highest and lowest values of �b in our parameter range, 5 and 1,000.

Result 7 A necessary condition for EUEm � EUEn > 0 is that the executive is more regulation averse than

the regulator, i.e., � < C
C+k�:

This result is broadly consistent with Proposition OA6, and the intuition (discussed above) that underlies it.

It is also consistent with our �ndings in the two-type model, although in that case the necessary conditions

for EUEm � EUEn > 0 do not boil down to the single inequality � < C
C+k�.

Result 8 EUEm�EUEn tends to be highest when bF0 �C� � ranges between 0.15 and 0.55� i.e., when the execu-
tive is solidly regulation averse to roughly regulation neutral� and when the corresponding bF0 �C+k� �

exceedsbF0 �C� � by approximately 0.25 to 0.40� i.e., when the regulator is somewhat more regulation sympathetic
than the executive.

To build intuition for Result 8, suppose that the executive is roughly regulation-neutral: bF0 �C� � � 0:5 (or,
equivalently, B0 � C

� ). This implies that a large portion of the executive�s prior distribution of
eB is above the

cuto¤ above which the executive would like to approve proposals, C� , and a large portion of the distribution

is below C
� , where the executive would like to reject. However, if there is an agency problem between the

executive and the regulator (which arises when � < C
C+k�), the regulator would prefer to propose a wider

range of rules than the executive would like to accept. Without BCA, this puts the executive in a bind. The

executive could either reduce its approval probability, which would reduce proposal costs through improved
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selection and also reduce the type 2 error probability but at the cost of a higher likelihood of a type 1

error; or it could increase its approval probability, reducing the likelihood of a type 1 error at the expense

of increasing the probability of a type 2 error and increasing proposal costs. If the executive is close to

regulation neutral, both type 1 and type 2 errors are distinct possibilities, so the executive places a high

value on the signal provided by BCA because it enables the executive to more e¤ectively distinguish between

instances of eB above or below C
� .

We see this value in the top left and top right panels of Figure OA10. These show the deadweight loss

and welfare gain decomposition components when � = 0:3375 and all other parameters are �xed at the

baseline parameterization, implying bF0(C� ) = 0:511 and bF0(C+k� ) = 0:930. Without BCA, there is signi�cant

welfare loss to the executive from both type 1 and type 2 errors. With BCA, the executive can achieve a big

reduction in welfare loss from type 2 error without substantially increasing welfare loss from type 1 errors.

(Indeed, in this case �2 = 15:68, while �1 = �1:29.)

Now suppose instead the executive is very regulation sympathetic: bF0 �C� � � 0:5. (The bottom two

panels in Figure OA10 pertain to this case, in which � = 0:3375, B0 = $1;000, and all other parameters are

held at baseline levels, which implies bF0 �C� � = 0:997 and bF0 �C+k� �
= 0:999.) Almost all of the mass of the

distribution of eB is above C
� . In this case, the ex ante probability of a type 2 error is very small, so even

without BCA, the executive can con�dently approve almost any proposal it receives from the regulator. (And

indeed, ��n = 1 in this case). BCA might help weed out those few cases in which eB < C
� , but these are low

probability occurrences, so mandatory BCA hardly adds any value for the executive: EUEm �EUEn = 0:013.

Finally, suppose bF0 �C� � � 0:5, so we have an extremely regulation-averse executive. (The two middle

panels in Figure OA10 pertain to this case, in which � = 0:3375, B0 = $150, and all other parameters

are at baseline levels, which implies bF0 �C� � = 0:070 and bF0 �C+k� �
= 0:492.) With much of the mass of

the distribution of eB below C
� , the ex ante probability of a type 1 error is fairly small. Without BCA, the

executive can con�dently reject almost any proposal it receives from the regulator. (And indeed, in this case,

��n = 0:02.) BCA does allow the executive to approve more proposals, reducing the welfare loss from type 1

errors, but this e¤ect is small because it is happening away from where much of the mass of the executive�s

prior distribution is located. Further, the use of BCA worsens selection, increasing the welfare loss from

type 2 errors and higher expected proposal costs. (In this case, �1 = 1:58, �2 = �0:24, and �3 = �0:17;

note that the scale of the vertical axis in the middle panels is an order of magnitude smaller than those in

the other panels.)

Result 9 Holding � �xed, EUEm�EUEn does not necessarily increase in the the degree to which the regulator�s

welfare weight � diverges from the executive�s.
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Result 9 is consistent with part 4 of Lemma 4 for the two-type model in the paper, which implies that BCA

is more valuable to the executive when the misalignment between the executive and regulator is moderate

than it is when the misalignment is either severe or modest.

The intuition underlying Result 9 is bound up in the nature of the selection problem created by the

divergence between the executive�s and regulator�s welfare weights. If the regulator is signi�cantly more

regulation sympathetic than the executive, i.e., bF0 �C+k� �
� bF0 �C� �, the regulator�s preferred proposal

range di¤ers so much from the executive�s that without BCA, the executive is nearly certain to reject any

proposed rule. Even if BCA improves selection, the regulator�s proposal range is likely to be far outside

where the executive would prefer to approve. Further, it is unlikely that BCA will makes the executive a

tougher gatekeeper, because without BCA, the executive is about as tough a gatekeeper as it can be: as just

noted, it would reject any proposed regulation with near certainty.

Result 10 Variation in �b a¤ects the magnitude of the executive�s valuation of BCA, EUEm � EUEn , but it

does not substantially change how the interaction of bF0 �C� � and bF0 �C+k� �
a¤ects EUEm � EUEn .

See Figure OA9. The upshot of this result is that the value the executive derives from BCA in our model

is driven by two forces that operate largely independently: the noisiness of the BCA and the regulation

aversion of the executive and regulator.

4.5 Discretionary BCA with bias: continuous-type model

Analogous to the model in the paper, we model bias by assuming that the executive commits to a methodology

such that eba = B +A+ �be"b;
where A is the degree of bias in the measurement of net bene�ts. When A > 0 the measurement of net bene�ts

is biased upward, and when A < 0 measured bene�ts exclude a component of true bene�ts. Throughout, we

assume that the standard deviation �b of the measured bene�t is independent of A.

If the regulator has discretion in how it uses BCA, the equilibrium in the regulatory approval subgame

is given by a triple fB�a; ��a; b�ag simultaneously satisfying

B�a = Ba(�
�
a) �

C

�
+

k

���a
:

��a = �a(B
�
a) =

b	�b�a �B�a �A
�b

�
:

b�a = bTa (Ba; A);
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where

bTa (Ba; A) =

8><>: �1 if Ba � C
�

solution to: Ba(b; A) + �ah(
Ba�Ba(b;A)

�a
) = C

� if Ba < C
� :

and

Ba(b; A) =
�2b

�2b + �
2
0

B0 +
�20

�2b + �
2
0

(ba �A)

is the mean of the posterior distribution of eB conditional on a realization ba�A of the de-biased BCA signaleba �A.
Consistent with the two-type model, if the executive has discretion in how it uses the results of the BCA,

the extent of bias is irrelevant: the regulator de-biases the BCA and acts exactly as it would in Section 4.2.

Proposition OA8 If BCA is mandatory with bias A, then the equilibrium in the regulatory approval sub-

game is identical to that when the BCA is mandatory and unbiased, except that the measured bene�t threshold

is adjusted by the magnitude of the bias, i.e.,

B�a = B�m

��a = ��m

b�a = b�m +A:

4.6 Strict BCA with bias: continuous-type model

As in the main paper, we assume the executive commits to accepting a proposed rule if and only if eba � C,

or equivalently eb � C �A, where eb is an unbiased BCA. The executive�s approval behavior is described by
asa(b) =

8><>: 1 b � C �A

0 otherwise
;

Knowing B, the regulator anticipates an approval probability �sa(B) = Eeb
h
as(eb)jBi = b	�C�A�B�b

�
, which

strictly increases in B. The regulator�s expected bene�t from proposing a new rule is thus �sa(B)(�B�C)�k.

On the relevant range B > C
� , this is strictly increasing in B, and limB!1 �sa(B)(�B � C) � k = 1

while limB!C
�
�sa(B)(�B � C) � k = �k. Thus, there exists a unique pivotal bene�t Bsa(A) such that
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�sa(Bsa(A))(�Bsa(A)� C)� k = 0, or equivalently

Bsa(A) =
C

�
+

k

�b	�C�A�Bsa(A)
�b

� : (38)

Note that limA!1Bsa(A) =
C+k
� , and limA!�1Bsa(A) =1. The latter limit implies that with an in�nite

degree of bias toward understating net bene�ts, the regulator will not propose a new rule.

The executive�s optimal degree of bias solves the optimization problem

EUEsa = max
A2R

EUE(A;�) = max
A2R

Z 1

Bsa(A)

�b	�C �A� x
�b

�
[�x� C]� k

�
f0(x)dx: (39)

The optimization is over the set of extended real numbers, which means that A =1 or A = �1 are feasible

solutions.23 Because R is a compact set, a solution to this optimization problem exists, though it is not

necessarily unique.

From (38), we have Bsa(C � b�m) = B�m . Thus, through the appropriate choice of A, the executive

can attain the outcome under mandated BCA with discretion, and thus EUEsa � EUEm. Another possible

outcome of the regulator�s design problem is A = 0. This is a strict BCA standard in its purest form.

We can express @EU
E(A;�)
@A as the di¤erence between a marginal bene�t and marginal cost, i.e., @EU

E(A;�)
@A =

MB(A;�)�MC(A;�) where

MB(A;�) =

Z 1

Bsa(A)

 

�
C �A� x

�b

�
(
1

�b
)[�x� C]f0(x)dx: (40)

MC(A;�) = (� � �) kBsa(A)

�Bsa(A)� C
f0(B

�
sa(A))

�
�dBsa(A)

dA

�
; (41)

and dBsa(A)
dA is obtained from (38):

dBsa(A)

dA
= �

[�Bsa(A)� C]h
�
C�A�Bsa(A)

�b

�
�b� + [�Bsa(A)� C]h

�
C�A�Bsa(A)

�b

� 2 (�1; 0):
The marginal bene�t of increasing A comes from a reduced welfare loss to the executive from type 1 errors.

23There are several justi�cations for allowing the executive to introduce in�nite bias into its BCA methodology. First, we
can think of A = �1 as the limit of large �nite degrees of bias. Another possible justi�cation is that A = �1 corresponds to
an executive biasing the result �as much as possible.� If there are any outside constraints from, for example, the legal system,
the executive will just re-optimize by setting A the highest or lowest value in that constraint set. We make no claims about
what that set contains, and hence, we allow to vary over the entire extended real line. A third justi�cation is that, �xing
one particular rule, an executive can e¤ectively ensure that measured bene�ts either exceed costs or are lower than costs by
setting A to some very high or very low value. In our case, given that eB is normally distributed and therefore has support
over the real line, any �nite value of A will feature positive approval and rejection probabilities. However, in practice, the
executive could likely place some bounds on such that there exists a �nite value of where the executive will be �sure enough�
of approval/rejection; this is basically akin to them setting A = �1 in our model.
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The marginal cost of increasing A is the increased welfare loss from type 2 errors and greater proposal costs.

We can immediately establish the executive�s preferences for bias when � � �.

Lemma OA6 A� = 1 and B�sa =
C+k
� if and only if � � �, where A� is the optimal bias and B�sa =

Bsa(A
�).

In light of Proposition OA5, an executive with welfare weight � � � would bias strict BCA upward as

extremely as possible so that the executive could replicate the outcome with mandatory BCA with discretion.

In this case, then, EUEsa = EUEm. Given Lemma OA3 we then have the following result.

Lemma OA7 If � � � and ka > 0; EUEsa < EUEn , i.e., an executive whose welfare weight is at least as

large as the regulator�s would prefer prohibiting BCA over mandating strict and biased BCA.

The preferred level of bias clearly depends on the executive�s welfare weight. From (40) and (41) it is

clear that MB(A;�) increases in � for any given A, while MC(A;�) decreases in �. Thus, @EU
E(A;�)

@A@� > 0,

i.e., EUE(�) is strictly supermodular in (A;�). Strict Monotonicity Theorem 1 in Edlin and Shannon (1998)

immediately implies the following.

Proposition OA9 Suppose �0 > �; A�(�) 2 argmaxA2R EUEsa(A;�); A�(�0) 2 argmaxA2R EUEsa(A;�0);

and A�(�) < 1. Then, A�(�) < A�(�0), i.e., an executive with a higher welfare weight will choose to bias

bene�ts upward more than an executive with a lower welfare weight.

The intuition is straightforward. The higher its welfare weight, the more concerned the executive will

be about reducing type 1 errors and the less concerned about type 2 errors and proposal costs. Increasing

the bias trades o¤ reductions in the former for increases in the latter. Proposition OA9 (and its underlying

intuition) is consistent with the results in the two-type model in the paper.

4.6.1 Computational analysis

To further explore the executive�s preferences for biasing BCA, we compute the optimal solution to the

problem in (39) for each combination of parameters in Table OA3. Figure OA11 re�ects the main insights

from this computational analysis. The top panel shows the optimal bias A� as a function of the executive�s

regulation-sympathy index bF0 �C� �. (In the computations being summarized here, all parameters but � and
�b are set at their baseline values.) Note that the place where each of the lines �start� re�ect the �rst

value of A� greater than �1. (For example, focusing on the turquoise line with �b = 100, it �starts�at a

regulation-sympathy index of about 0.07. This implies that when �b = 100 and bF0 �C� � < 0:07, A� = �1.)
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Furthermore, the lines turn from solid to dashed whenever EUEn > EUEsa; in other words, when the executive

would prefer to prohibit BCA entirely rather than institute strict BCA with its optimal level of bias.

Consistent with Lemma OA6, A�(�) =1 only for � � �. (Recall that in the baseline parameterization,

� = 1, implying that � � � when bF0(C� ) � 0:933.) Consistent with Proposition OA9, A�(�) is strictly

increasing in �. These panels illustrate that as long as BCA provides a somewhat informative signal (�b <

1000), even when the regulator is only somewhat more regulation averse than the regulator, the optimal

bias is typically negative, i.e., the executive bene�ts from the use of methodologies that undercount the net

social bene�ts of proposed regulations. And indeed, as the executive becomes more regulation averse, this

negative bias tends to accelerate, and eventually it �falls o¤ a cli¤�and becomes in�nitely negative. This

pattern suggests an asymmetry in the preferred degree of bias implemented by executive administrations.

For two administrations with moderate levels of �, the preferred degree of bias does not di¤er much, even

if one is regulation averse and the other regulation sympathetic. But those preferred degrees of bias might

be very di¤erent from the highly negative bias preferred by a very regulation-averse administration. For

example, if �b = 100 (our baseline value) a center-left administration with a regulation-sympathy index of

0.75 would prefer a BCA methodology with a slight negative bias, while a center-right administration with

a regulation-sympathy index of 0.4 would prefer a moderately negatively biased methodology. These two

administrations would utilize di¤erent BCA methodologies� perhaps the center-left administration might

attempt to include co-bene�ts in their BCA analyses more so than the center-right administration� but their

analytical frameworks would broadly resemble each other. But an administration that is highly regulation

averse, with an index of 0.05, would prefer a methodology that is so biased that it would be guaranteed to

reject any proposal coming from a regulatory agency. This administration�s approach to BCA would look

very di¤erent from either of the previous two. This insight is consistent with our analytical �ndings in the

two-type model.

The top panel of Figure OA11 also shows that a less precise BCA exaggerates the e¤ect of regulation

sympathy on optimal bias. As �b increases, regulation-sympathetic executives tend to prefer more positive

bias and regulation-averse executives tend to prefer more negative bias, with the crossover point at around a

regulation-sympathy index of 0:45. Strikingly, if BCA is extremely noisy (�b = 1; 000), any regulation-averse

executive will prefer to bias bene�ts in�nitely downward, while the bias of a regulation-neutral or regulation-

sympathetic executive shoots up towards1 very quickly. We expect to see some of this exaggeration because

for noisier BCA, the executive needs to bias BCAmore to achieve its desired e¤ect on the approval probability.

The second panel normalizes the marginal e¤ect of a unit of bias by plotting the executive�s prior prob-

ability of approving a regulation when using strict and biased BCA,
R1
B�
sa

b	�C�A��x
�b

�
f0(x)dx. Increasing

this metric by one percentage point directly corresponds to a one percentage point increase in the probabil-
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ity the executive approves a rule. When A� = �1, this value is zero, since the executive will not approve

any regulations. However, when A� = 1, the value does not reach one; instead, it is bF0 �C+k� �
, or the

regulation-sympathy index of the regulator (which doubles as the lowest possible pivotal bene�t for the

regulator). This panel illustrates that as BCA gets more precise, the approval probability gets closer and

closer to the 45-degree line. Intuitively, this makes sense; the executive�s regulation-sympathy index is by

construction the proportion of rules it would like to approve, and with a very precise BCA, the executive

can very precisely tailor the level of bias to nearly eliminate both type 1 and type 2 errors and move the ex

ante approval probability to its preferred level. However, a noisy BCA prevents the executive from doing so,

and makes the executive rely more on its priors. This e¤ect culminates when �b = 1000, when the executive

approves e¤ectively all the rules it can when it is regulation sympathetic, and rejects any rule when it is

regulation averse.

The bottom panel in Figure OA11 shows the value to the executive of strict BCA with bias over a

discretionary BCA mandate, EUEsa � EUEm. Again, we see a strong asymmetry. For even a moderately

regulation-averse executive, the value from using biased BCA methodologies is modest, and as the executive

becomes more regulation sympathetic, it approaches zero. Bias is most valuable for strongly regulation-averse

executives. For example, for our baseline parameterization, EUEsa�EUEm attains its peak around a regulation-

sympathy index of 0.05. For more regulation-sympathetic executives, bias can still be somewhat valuable if

BCA is very accurate, but its value to the executive is much lower. Negatively biased methodologies are most

valuable for regulation-averse executives that are just on the cusp of the �bias cli¤�where A�(�) rapidly

falls o¤ to �1.

Further, Figure OA11 shows that the value of biased methodologies can be greatest for the executive when

the BCA signal is very noisy. Recall that a regulation-averse executive is particularly vulnerable to a type 2

error because its preferred approval threshold, C� , is very high, above the mean of the prior distribution. The

executive�s vulnerability to type 2 errors with unbiased BCA is particularly high when �b is high because

the noisy BCA increases the likelihood of BCA �draws�that exceed the approval threshold even when the

underlying bene�t does not exceed C
� . A negatively biased BCA helps the executive reduce or eliminate the

cost of type 2 errors.

Summarizing our computational �ndings:

Result 11 The optimal bias A�(�) can be positive or negative. It tends to be negative for regulation-averse

executives. There is an asymmetry in the optimal bias across the spectrum of regulation sympathy. While the

optimal level of bias does not di¤er much between moderately regulation-averse and moderately regulation-

sympathetic executives, it di¤ers drastically between moderately and strongly regulation-averse executives.
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Result 12 The value EUEsa � EUEm of a strict BCA standard with bias is greatest for a strongly (but not

overwhelmingly) regulation-averse executive. That value tends to be maximal for an executive that prefers

an in�nitely negative bias, but is on the cusp of preferring a �nite level of bias. The value of bias to those

executives who value it the most tends to be higher as BCA becomes noisier.

4.7 Summing up

With the exception of the non-existence of a maximally separating equilibrium under voluntary BCA in the

two-type model, our results in the two-type model have counterparts� either analytically or computationally�

in the continuous-type model with normal priors and BCA signals. And even with voluntary BCA in the

continuous-type model, a maximally separating equilibrium existed for a narrow swath of parameter space

when (as we would expect) ka is small in comparison to kr. Moreover, voluntary BCA was rarely optimal

for the executive.

Assumptions 1 and 2 in the two-type model do limit the degree of alignment between the executive and

regulator, something which our continuous-type model relaxes. That is, our continuous-type model allows

for both a �big�agency problem between the executive and the regulator and a �small one,�whereas the

two-type model considers only a �big�agency problem. However, it is not di¢ cult to extend the two-type

model to allow closer alignment between the executive and the regulator, and when we do so, we �nd results

that correspond to the continuous-type model: only a high-bene�t regulator would propose; the executive

approves a new regulation irrespective of the outcome of the BCA, and the executive is either indi¤erent

between mandating or prohibiting BCA (ka = 0) or strictly prefers prohibiting BCA (ka > 0).

All of this suggests to us that there little loss of generality from the analysis of the two-type model.

5 Discretionary BCA with asymmetric bias

In the paper, we assume that bias changed the mean of the measured bene�t. However, it is also possible that

the executive could adopt methodologies that changed the information structure of the bene�t-cost signal.

For example, by mandating that the BCA methodology utilize a very high discount rate, the executive can

ensure that the analysis will be very informative about a regulation that ends up with a high measured

bene�t (since the high discount rate would make this outcome di¢ cult to achieve unless the underlying

social bene�t was quite large), but it will not be as informative about a proposed regulation that ends up

with a low measured bene�t (because the high discount rate predisposes the analysis in this direction).

To model this, we return to the two-type model in the paper. Our analysis focuses on the case of

misalignment between the executive and regulator, which encompasses both Assumptions 2 and 3 in the
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paper. We also, in this section, continue to allow for the possibility of non-negative direct cost of a BCA,

i.e., ka � 0. Throughout this section, then, we assume � � C+k
BL , and we let �m � C

BL +
k

(1�q)BL .

We assume the executive commits to BCA methodologies such that the probability of a high measured

bene�t is changed by an amount x, i.e., Pr(eb = bH j eB = BH) = q + x and Pr(eb = bH j eB = BL) = 1� q + x,

where x 2 [�(1� q); 1� q]. This approach creates an asymmetry in the informativeness of eb. Because
Pr(eb = bLj eB = BL) = q � x, then if x > 0 BCA signal is more likely to identify the �correct�underlying

state when eB = BH than when eB = BL. If x < 0, the reverse is true. In this model of bias, we assume that

the executive has discretion in how to use the results of the BCA in its approval decision.

Before stating the equilibrium, it is useful to see how the bias x changes key expressions.

E[ eBjeb = bH ; x] =
p(q + x)

p(q + x) + (1� p)(1� q + x)B
H +

(1� p)(1� q + x)
p(q + x) + (1� p)(1� q + x)B

L: (42)

E[ eBjeb = bL; x] =
p(1� q � x)

p(1� q � x) + (1� p)(q � x)B
H +

(1� p)(q � x)
p(1� q � x) + (1� p)(q � x)B

L: (43)

It is straightforward to show that E[ eBjeb = bH ; x] > E[ eBjeb = bL; x] for all x 2 [�(1�q); 1�q)]; @E[ eBjeb=bH ;x]@x <

0, @E[
eBjeb=bL;x]
@x < 0; and

BH � E[ eBjeb = bH ; x] � pBH + 2(1� q)(1� p)BL
p+ 2(1� q)(1� p) for � (1� q) � x < 1� q:

2(1� q)pBH + (1� p)BL
2(1� q)p+ 1� p � E[ eBjeb = bL; x] � BL for � (1� q) � x < 1� q:

To illustrate these inequalities, suppose that the executive sets x = 1 � q, the maximal upward distortion.

Then, Pr(eb = bH j eB = BH) = 1 and Pr(eb = bH j eB = BL) = 2(1� q). Thus, a high measured bene�t could be

consistent with either a low or a high underlying social bene�t, but a low measured bene�t could only arise

if the true social bene�t was low. The posterior expectation in the latter case is thus BL. By contrast if

x = �(1� q), Pr(eb = bH j eB = BH) = 2q� 1 and Pr(eb = bH j eB = BL) = 0, so a high measured bene�t is only

consistent with a high underlying social bene�t� so the posterior expectation is BH� while a low measured

bene�t is consistent with both underlying states.

More generally, the higher is x, the more likely it is that the measured bene�t will be high. Consequently,

when it updates its beliefs upon seeing a measured bene�t, the executive downweights the possibility that the

underlying state is BH and upweights the chance that the state is BL. This is why the posterior expectations

are decreasing in x. We can think of the executive as partially de-biasing its beliefs in light of its commitment

to x. Indeed, increasing x can be thought of as structuring a BCA methodology that does a better job of

identifying the worst case scenario. An example is the choice of a discount rate. By committing to the use
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of a low discount rate in discounting future bene�ts and costs, the executive biases the analysis so there is

a higher probability that the measured bene�t is high. However, in interpreting the data ex post, a BCA

study that results in low measured net social bene�t when a low discount rate is used is very bad news,

while one that results in a high measured bene�t is possibly good news, but not as good as it would have

been if the measured bene�t had been positive with a high discount rate.

The equilibrium (as a function of x and denoted by the subscript a) can be derived in the same way

that we derived the equilibrium in the paper. When there is su¢ cient alignment between the executive and

the regulator, i.e., � < C+k
BL , the choice of x does not change the equilibrium outcome or the executive�s ex

ante welfare: in this equilibrium, ��a = ��m = (1; 0) and ��A = ��m = (1; 1). When � � C+k
BL , there exists an

equilibrium in the regulatory proposal subgame with mandatory BCA with asymmetric bias and discretion

such that ��a 6= (0; 0). Let �m(bH ; x) = C

E[ eBjeb=bH ;x] , �m(bL; x) = C

E[ eBjeb=bL;x] , and �m(x) � C
BL +

k
(1�q+x)BL :

1. If � � �m(b
L; x), then the equilibrium is ��a = (1; 1), �

�
a = (1; 1).

2. If � � �m(b
L; x) and � � �m(x), then the equilibrium is ��a = (1; �

�
a(B

L)), ��a = (1; �
�
a(b

L)), where

��a(B
L) =

p(1� q � x)(�BH � C)
(1� p)(q � x)(C � �BL) 2 (0; 1];

��a(b
L) =

k

(q � x)(�BL � C) �
1� q + x
q � x 2 (0; 1]:

3. If � 2 [�m(bH ; x); �m(bL; x)] and � � �m(x), then the equilibrium is ��a = (1; 1), �
�
a = (1; 0).

4. If � � �m(b
H ; x) and � � �m(x), then the equilibrium is ��a = (1; �

�
a(B

L)), ��a = (�
�
a(b

H); 0), with

��a(B
L) =

p(q + x)(�BH � C)
(1� p)(1� q + x)(C � �BL) 2 (0; 1];

��a(b
H) =

k

(1� q + x)(�BL � C) 2 (0; 1]:

The executive�s ex ante welfare is

EUEa (x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

p(�BH � C � k) � � C+k
BL

�(pBH + (1� p)BL)� C � k � 2
�
C+k
BL ; �m(x)

�
; � > �m(b

L; x)

p
��

2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�

� 2
�
C+k
BL ; �m(x)

�
; � < �m(b

L; x)

p(q + x)(�BH � C)� (1� p)(1� q + x)(C � �BL)� k � > �m(x); � 2 [�m(bH ; x); �m(bL; x)]

�kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

�
� > �m(x); � < �m(b

H ; x)

:

(44)
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De�ne xm(�) as the inverse of �m(x), i.e., xm(�) =
k

�BL�C � (1 � q). Note that EUEa (x) is discontinuous

at xm(�). However straightforward algebra establishes that EUEa (x) is continuous in x both for x > xm(�)

and x < xm(�).

We can notice some interesting features of the equilibrium. First, when x = 1� q, then �m(bL; 1� q) =
C

E[ eBjeb=bL;1�q] = C
BL and �m(1�q) = C

BL +
k

2(1�q)BL . It follows that for � 2 (C+kBL ;
C
BL +

k
2(1�q)BL ) and for all

� 2
�
C
BH ;

C
BL

�
, ��a(B

L) = 0. Thus when there is just modest misalignment, the maximum asymmetric bias

can enable the executive to replicate the full-information solution. That is, x = 1 � q can create e¤ective

alignment in cases where we would have had misaligned BCA in the absence of bias. The intuition is that as

x gets closer to 1 � q, a measured bene�t bL becomes an extremely strong signal that the underlying state

is BL, and it becomes a perfect signal when x = 1 � q. Given this, even a small proposal probability by a

type-BL regulator, leads the executive to believe that �E[ eBjeb = bL; x] < C, and consequently, the executive

will optimally set �a(bL) = 0 for almost any conjectured �a(BL). A type-BL regulator would then expect

that if it did propose, the expected probability of approval would be E
�
�ajBL; x

�
= (1� q + x)�a(bH).

As long as there is modest misalignment, E
�
�ajBL; x

� �
�BL � C

�
� k < 0, even if �a(bH) = 1. Thus, by

maximally biasing the BCA signal, the executive can choke o¤ the proposal of a rule with low net social

bene�ts, provided that there is only modest misalignment.

Second, maximally biasing the BCA signal upward is not su¢ cient to deter weak proposals when there is

severe misalignment, i.e., � > �m(x): even a type-B
L will be highly motivated to propose in this situation.

And this creates a trade-o¤ for the executive because increasing x decreases �m(x) and thus expands the

range in which we have severe misalignment. In fact, we can show that EUEa (x) jumps discontinuously

downward at the value of x that tips the executive from the case of modest misalignment to that of severe

misalignment.

The executive�s optimal bias solves the problem

max
x2[�(1�q);(1�q)]

EUEa (x):

Let x�(�; �) = argmaxx2[�(1�q);(1�q)]EUEa (x) be the (possibly non-unique) solution to this problem.

Proposition OA10 Suppose the regulator and executive are misaligned, i.e., � > C+k
BL . (a) If � 2

�
C+k
BL ;

C
BL +

k
2(1�q)BL

�
,

for all � 2
�
C
BH ;

C
BL

�
; x�(�; �) = 1 � q is the unique solution to the executive�s problem; (b) If � >

C
BL +

k
2(1�q)BL and � 2

�
C
BH ; �n

�
, then x�(�; �) = xm(�) is the unique solution to the executive�s problem;

(c) If � > C
BL +

k
2(1�q)BL and � = �n, then x�(�; �) = xm(�) is the unique solution to the executive�s

problem. (d) If � > C
BL +

k
2(1�q)BL and � 2

�
�n; �m(b

L; xm(�))
�
, x�(�; �) = xm(�) or 1� q is a solution to

the executive�s problem, depending on whether p
��

2q�1
q�xm(�)

�
(�BH � C)�

�
1 + (1�q�xm(�))(�BH�C)

(q�xm(�))(C��BL)

�
k
�
?
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p(�BH � C)� (1� p)2(1� q)(C � �BL)� k. If � 2
�
�m(b

L; xm(�));
C
BL

�
, x�(�; �) = 1� q is the unique

solution to the executive�s problem.

This result implies that a regulation-sympathetic executive�s optimal bias is at least as large as that of

a regulation-averse or regulation-neutral executive.

A direct implication of Proposition OA10 is that when there is severe misalignment, a regulation-neutral

or regulation-averse executive may prefer to bias the BCA downward.

Corollary 1 If � > �m and � 2
�
C
BH ; �n

�
then x�(�; �) = xm(�) < 0 is the unique solution to the

executive�s problem, i.e., when there is severe misalignment and the executive is regulation averse or regulation

neutral, the executive prefers to bias the BCA signal downward.

6 Full commitment model

The full commitment solution, denoted by subscript f solves

max
�f (BH);�f (BL);�f (bH);�f (bH)

p
�
�f (B

H)
n
E[�f (eb)jBH ](�BH � C)� ko� ;

+ (1� p)
�
�f (B

L)
n
E[�f (eb)jBL](�BL � C)� ko�

subject to:

�f (B
H) =

8>>>><>>>>:
1 E[�f (eb)jBH ](�BH � C)� k > 0

2 [0; 1] E[�f (eb)jBH ](�BH � C)� k = 0
0 E[�f (eb)jBH ](�BH � C)� k < 0

: (45)

�f (B
L) =

8>>>><>>>>:
1 E[�f (eb)jBL](�BL � C)� k > 0

2 [0; 1] E[�f (eb)jBL](�BL � C)� k = 0
0 E[�f (eb)jBL](�BL � C)� k < 0

: (46)

�f (b
H) 2 [0; 1]; �f (bH) 2 [0; 1];

where

E[�f (eb)jBH ] = q�f (b
H) + (1� q)�f (bL):

E[�f (eb)jBL] = (1� q)�f (bH) + q�f (bL):
We characterize the solution to this problem for all �: � � C+k

BL , � 2
�
C+k
BL ; �m

�
, and � � �m, where, as in

the previous section, �m � C
BL +

k
(1�q)BL . Of course, only this last case is considered in the main paper. We
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also allow for a non-negative direct cost of BCA, ka, with k = ka + kr and k � kr.

Proposition OA11 The solution to the executive�s problem under full commitment is as follows. (1) If

� � C
BH +

k

E[��f (
eb)jBH ]BH

��f (B
H) = 1:

��f (B
L) = 0:

��f (b
H) =

8>>>><>>>>:
1 � � C+k

BL

1 � 2
�
C+k
BL ; �m

�
k

(1�q)(�BL�C) � � �m

: (47)

��f (b
L) =

8>>>><>>>>:
1 � � C+k

BL

k
q(�BL�C) �

(1�q)
q � 2

�
C+k
BL ; �m

�
0 � � �m

: (48)

(2) If � < C
BH +

k

E[��f (
eb)jBH ]BH

, ��f (B
H) = ��f (B

L) = ��f (b
H) = ��f (b

L) = 0:

In all cases, the executive�s full-commitment solution chokes o¤ proposals from a low-type regulator. By

contrast, in Proposition 2 in the paper, under mandatory BCA there is always a positive proposal probability

from a low-bene�t regulator. (As discussed in Section 3.4 of the paper, there is also a positive proposal

probability from a low-bene�t regulator in the equilibrium when we replace Assumption 2 in the paper

with Assumption 3). Thus, the equilibrium in the mandatory BCA subgame does not implement the full-

commitment outcome.24

Does the equilibrium under strict and biased BCA presented in the paper implement the full-commitment

solution characterized in Proposition OA11? In general, no. When � � C
BH +

k

E[��f (
eb)jBH ]BH

and � � �m

(i.e., Assumption 2 in the paper is satis�ed), (47) implies that the full-commitment solution is not a strict

bene�t-cost standard: it is optimal for the executive to commit to rejecting some proposals that have a high

bene�t-cost signal. This means that for that range of � for which the A�(�) = 0, the outcomes under strict

BCA with bias and the full commitment must di¤er (since A�(�) = 0 implies that the executive is utilizing

a strict bene�t-cost standard). Is A�(�) = 0 consistent with the condition � � C
BH + k

E[��f (
eb)jBH ]BH

=

C
BH +

(1�q)(�BL�C)
qBH ? There are parameterizations for which the answer is yes. For example, if BH =

700; BL = 200; C = 100; p = 0:5; q = 0:75, kr = 4; ka = 0, and � = 2, then Assumption 2 is satis�ed (since

�m = 1:66). We have �m(bH) = 0:273, �n = 0:375, and �m(bL) = 0:600. In addition, the values of � for

which ��f (b
H) = k

(1�q)(�BL�C) = 0:32 and ��f (b
L) = 0 are � � 0:238. Further, it can be veri�ed that the

24However, if � � C+k
BL , a case ruled out by Assumption 2 in the paper but analyzed earlier in Section 2 above, the equilibrium

in the mandatory BCA subgame does coincide with the full-commitment solution.
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su¢ cient condition for Proposition 7 in the paper holds. In this case, b�s = 0:287 and thus A�(�) = 0 for

� 2 [0:287; 0:600]. For any � in this range, the executive would adopt a strict BCA standard with no bias,

while the full-commitment solution is �tougher�than a strict BCA standard.

There is a case where strict BCA with bias would implement the full-commitment solution. For �

su¢ ciently close to zero, the full-commitment solution is to reject any proposal, and this would correspond

to the the case of strict BCA with downward bias.

7 Proofs

Proof of Lemma OA1:
Suppose, to the contrary, that we had an equilibrium in which for B0 6= B00, �0 6= �00. Then necessarily

�0 [�B0 � C]� k � �00 [�B0 � C]� k:
�00 [�B00 � C]� k � �0 [�B00 � C]� k:
�0 [�B0 � C]� k � 0:
�00 [�B00 � C]� k � 0:

The latter two conditions imply �B0�C > 0 and �B00�C > 0. The �rst two inequalities then imply �0 � �00

and �0 � �00, respectively, which means that �0 = �00, contradicting the contrapositive assumption.�

Proof of Proposition OA1. First, we establish that the proposed equilibrium in indeed an equilibrium.
With ��n = 1, C

� +
kr
���n

= C+kr
� 2 (BL; BH), where the set inclusion is equivalent to our maintained

assumption. Therefore, �n(��n) = (1; 0) = ��n. Further, E[ eBj��n] = BH > C
� , where the last inequality follows

from Assumption 1 in the paper. Therefore, �n(��n) = 1 = ��n.
We next show that this equilibrium is unique using our solution concept, which incorporates the D1

re�nement. First, we can eliminate any equilibria where �n(BL) > 0 because, when eB = BL, alignment
implies that proposing with positive probability is strictly dominated by not proposing at all for the regulator.
Therefore, �n(�n; BL) = 0 for all �n 2 [0; 1].
We can then break into two cases. First, suppose that �n(�n; BH) > 0. Then E[ eBj�n] = BH . Assumption

1 then gives us that �n(�n) = 1.
Second, suppose �n(�n; BH) = 0. Using the logic of footnote 14 in the paper, such equilibria do not

survive D1, as the type of regulator that bene�ts most from proposing is the high type, and the executive
would like to approve high-type regulations per Assumption 1.�

Proof of Proposition OA2. The proof is identical to the proof of Proposition OA1, but with k replacing
kr.�

Proof of Proposition OA3.We state necessary and su¢ cient conditions for each kind of equilibrium below,
and show that they are mutually exclusive (except for when equalities between certain parameters hold),
and they cover the entire parameter space.
First, ��m = (1; 1), �

�
m = (1; 1) is an equilibrium if and only if

E[ eBj(1; 1); bL] � C

�
: (49)

Note that (49) implies that E[ eBj(1; 1); bH ] � C
� , and that our assumptions on the parameters imply that

the regulator is responding optimally in this case, i.e. BL > C+k
� . Rearranging (49) gives us the � cuto¤ in

part (1) of the proposition.
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Second, ��m = (1; �
�
m(B

L)), ��m = (1; �
�
m(b

L)) with ��m(B
L); ��m(b

L) 2 (0; 1] is an equilibrium if and only
if

C

�
+

k

�(1� q + q��m(bL))
= BL; (50)

p(1� q)
p(1� q) + q(1� p)��m(BL)

BH +
q(1� p)��m(BL)

p(1� q) + q(1� p)��m(BL)
=
C

�
: (51)

Notice that ��m(b
L) � 0 and ��m(BL) � 1, along with our assumptions, imply that whenever these statements

hold, we have E[ eBj(1; 1); bL] < C
� and

C
�+

k
�(1�q) � BL. Further, because lim�m(BL)!0E[ eBj(1; �m(BL)); bL] =

BH > C
� and lim�m(bL)!1

C
� +

k
�(1�q+q�m(bL)) =

C+k
� < BL by our assumptions, there will exist values of

��m(b
L) < 1 and ��m(B

L) > 0 that make (50) and (51) hold. Solving for these values in (50) and (51) gives
us the � and � cuto¤s in part (2).
Third, ��m = (1; 1), �

�
m = (1; 0) is an equilibrium if and only if

C

�
+

k

�(1� q) � BL; (52)

p(1� q)
p(1� q) + q(1� p)B

H +
q(1� p)

p(1� q) + q(1� p)B
L � C

�
; (53)

pq

pq + (1� p)(1� q)B
H +

(1� p)(1� q)
pq + (1� p)(1� q)B

L � C

�
: (54)

Rearranging (52)-(54) give us the � and � cuto¤s in part (3).
Fourth and �nally, ��m = (1; �

�
m(B

L)), ��m = (�
�
m(b

H); 0) with ��m(B
L); ��m(b

H) 2 (0; 1] is an equilibrium
if and only if

C

�
+

k

�(1� q)��m(bH)
= BL; (55)

pq

pq + (1� p)(1� q)��m(BL)
BH +

(1� p)(1� q)��m(BL)
pq + (1� p)(1� q)��m(BL)

BL =
C

�
: (56)

Notice that ��m(b
H) � 1 and ��m(BL) � 1, along with our assumptions, imply that whenever (55) and (56)

hold, we have E[ eBj(1; 1); bH ] < C
� and

C
� +

k
�(1�q) � BL. Further, because

lim
�m(BL)!0

E[ eBj(1; �m(BL)); bH ] = BH >
C

�
;

lim
�m(bH)!0

C

�
+

kr
�(1� q)�m(bH)

=1 > BL;

there exist values of ��m(b
H) > 0 and ��m(B

L) > 0 that make these equalities hold. Solving for these values
in (55) and (56) gives us the � and � cuto¤s in part (4).
To conclude, unless � = E[ eBj(1; 1); bL], � = E[ eBj(1; 1); bH ], or � = C

BL +
kr

BL(1�q) , then the parameter
values are such that at most only one of these four sets of conditions hold. Because the union of these
conditions is the entire parameter space, at least one of these four sets of conditions hold. Therefore, we
have proven that unless � = E[ eBj(1; 1); bL], � = E[ eBj(1; 1); bH ], or � = C

BL +
kr

BL(1�q) , there is exactly one
equilibrium. � �
Proof of Proposition OA4. The equilibrium occurs at the point (Bn; �n) at which the regulator�s best
response function Bn(�n) in (2) and the executive�s best response function �n(Bn) in (3) are simultaneously
satis�ed. Inverting Bn(�n) gives us B�1n (Bn) =

kr
�Bn�C : Since the regulator will only propose a new rule if

B � C
�+

kr
��n

� C+kr
� , the only pivotal bene�ts that are candidates for equilibrium areBn 2

h
C+kr
� ;1

�
. Over

this domain, B�1n (Bn) is continuous, strictly decreasing, with B�1n (C+kr� ) = 1 and limBn!1B�1n (Bn) = 0.
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For the executive�s best response function in (3), we recall that E
h
~Bj eB � Bn

i
= B0 + �0h

�
Bn�B0

�0

�
,

and note that this is a continuous, strictly increasing function, with limBn!�1E
h
~Bj eB � Bn

i
= B0, and

limBn!1E
h eBj eB � Bn

i
= 1. The executive�s best response function is thus a continuous, multivalued

function given by

�n(Bn) =

8>>><>>>:
1 if Bn � B0 + �0h

�1
�

C
��B0

�0

�
2 [0; 1] if Bn = B0 + �0h

�1
�

C
��B0

�0

�
0 if Bn � B0 + �0h

�1
�

C
��B0

�0

�
;

; (57)

where h�1(�) is the inverse standard normal hazard function.
The equilibrium occurs at a pivotal bene�t at which B�1n (Bn) � �n(Bn) = 0. Given the properties of

B�1n (Bn) and �n(Bn), over the domain Bn 2
h
C+kr
� ;1

�
, the function B�1n (Bn) � �n(Bn) is continuous

and monotonically decreasing in Bn, mapping to all possible values in [0; 1], with a vertical portion at

Bn = B0 + �0h
�1(

C
��B0

�0
). By the intermediate value theorem and the monotonicity of B�1n (Bn)� �n(Bn),

there exists a unique B�n at which B
�1
n (B�n)� �n(B�n) = 0 and a unique ��n given by ��n = B�1n (B�n) 2 (0; 1].

This establishes that an equilibrium exists and is unique.

Now, de�ne G(�; �; �) � E
h eBj eB � C

� +
kr
��

i
� C

� = B0 + �0h

�
C
� +

kr
���B0

�0

�
� C

� . The function G(�) is

continuous in its arguments; lim�!0G(�; �; �) = �1; lim�!0G(�; �; �) = 1, and @G
@� > 0; @G@� < 0; @G@� <

0. (The latter two inequalities follow because, as is well known, the standard normal hazard function is
monotonically increasing; see Bagnoli and Bergstrom 2005). Moreover,

G(�; 1; �) = E[ eBj eB � C + kr
�

]� C

�
� C + kr

�
� C

�
> 0: (58)

Because G(�) is continuous in �, the intermediate value theorem implies that a solution for � to G(�; 1; �) = 0
exists, and @G

@� > 0 implies that this solution, ��n(�), is unique and (given (58)) is strictly less than �. The
solution ��n(�) can be written as

��n(�) =
C

B0 + �0h

�
C+kr
� �B0

�0

� < �:

Note that

G(�; 1; �) < 0 for � < ��n(�): (59)

G(�; 1; �) > 0 for � > ��n(�): (60)

Also note that G( C
C+kr

�; 1; �) = E
h eBj ~B � C+kr

�

i
� C+kr

� > 0, which implies that ��n(�) <
C

C+kr
�:

Now, suppose � < ��n(�) <
C

C+kr
�: Because G(�) decreases in � and lim�!0G(�; �; �) = 1, the

inequality in (59) and @G
@� < 0 implies that for � < ��n(�) there exists a unique �

�
n 2 (0; 1) such that

G(�; ��n; �) = 0, or equivalently, given the de�nition of G(�),

B0 + �0h

 
C
� +

kr
���n

�B0
�0

!
=
C

�
: (61)

Now, let B�n =
C
� +

kr
���n

. Clearly (B�n; �
�
n) satis�es the regulator�s best response function Bn = Bn(�n).

Because ��n 2 (0; 1) and (61) implies, B�n = C
� +

kr
���n

= B0 + �0h
�1
�

C
��B0

�0

�
, (B�n; �

�
n) also satis�es the

executive�s best response condition, �n = �n(Bn). Thus, for � < ��n(�), conditions (4) and (5) characterize
the equilibrium in the regulatory approval subgame when BCA is not used. We note that since G(�; ��n; �) =
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0, we have
d��n
@�

= �
@G
@�
@G
@�

> 0;
d��n
@�

= �
@G
@�

@G
@�

< 0:

Consider, �nally, � � ��n(�). Given (60) (along with G(�
�
n(�); 1; �) = 0), it follows that E[ eBj eB � C+kr

� ] � C
�

for � � ��n(�), which in turn implies that the executive�s best response �n(Bn) = 1 for all Bn 2 [C+kr� ;1):
That is, for any pivotal bene�t in the relevant domain of the regulator, the executive will approve a proposed
regulation with certainty. Note, too, that Bn(1) = C+kr

� , so the pivotal bene�t Bn = C+kr
� is a best reply

to the approval probability ��n = 1. Thus, when � � ��n(�), there is a pure strategy equilibrium given by
B�n =

C+kr
� and ��n = 1, establishing part (2) of the proposition. �

Proof of Lemma OA2.
Preliminaries: We begin by stating some properties of the hazard function of the standard normal distribu-
tion h(z): (a) h0(z) > 0 for z 2 (�1;1); (b) h(z) > z for z 2 (�1;1); (c) limz!�1(h(z) � z) = 1; (d)
limz!1(h(z)� z) = 0; and (e) h0(z) < 1 for z 2 (�1;1). As noted in the proof of Proposition OA4, prop-
erty (a) is well known. To establish property (b), it is straightforward to show that h0(z) = h(z) (h(z)� z),
which, given property (a) and the fact that h(z) > 0, implies that h(z) > z for all z 2 (�1;1). For
property (c), recall that h(z) =  (z)b	(z) = e�

1
2
z2R1

z
e�

1
2
t2dt

, so limz!�1 h(z) = limz!�1 e�
1
2
z2R1

�1 e�
1
2
t2dt

= 0
1 , so it immediately

follows that limz!�1 [h(z)� z] =1.
To establish property (d), we can write h(z)� z as

h(z)� z =
e�

1
2 z

2 � z
R1
z
e�

1
2 t

2

dtR1
z
e�

1
2 t

2
dt

:

Thus, we have

lim
z!1

[h(z)� z] =
limz!1

h
e�

1
2 z

2 � z
R1
z
e�

1
2 t

2

dt
i

limz!1
R1
z
e�

1
2 t

2
dt

=
0

0

=
limz!1

R1
z
e�

1
2 t

2

dt

limz!1 e�
1
2 z

2
dt

=
0

0

=
limz!1 e�

1
2 z

2

limz!1 ze�
1
2 z

2
= lim
z!1

1

z
= 0;

where the equalities in the second and third lines follow from successively applying L�Hospital�s rule.
To establish property (e), we begin by establishing that h(z) is a strictly convex function. It is well

known that the Mills ratio, 1
h(z) , is convex in z (Baricz 2008). Now, d

1
h(z)

dz = h0(z)

[h(z)]2
. Thus, d2

1
h(z)

dz2 =

h00(z)[h(z)]2�2h(z)[h0(z)]
2

h(z)4 > 0, so h00(z) >
2h(z)[h0(z)]

2

[h(z)]2
> 0 for all z 2 (�1;1). Given that h(z) is convex in

z, to establish that h0(z) < 1 for all z 2 (�1;1), it su¢ ces to show that h0(z) < 1 for z � 0, because the
strict convexity of h(�) implies that h0(z) is an increasing function of z. Now, according to Theorem 2.3 in
Baricz (2008), for z � 0, 1

h(z) >
2p

z2+4+z
, so for z � 0, h(z) <

p
z2+4+z
2 . Since h0(z) = h(z) (h(z)� z),

h(z)� z > 0, and
p
z2+4+z
2 > 0 for z � 0, we have for z � 0

h0(z) <

 p
z2 + 4 + z

2

!
(h(z)� z)

<

 p
z2 + 4 + z

2

! p
z2 + 4 + z

2
� z
!

=
1

4

�p
z2 + 4 + z

��p
z2 + 4� z

�
= 1:
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As indicated above, the convexity of h0(z) then implies that h0(z) < 1 for all z 2 (�1;1). �
Proof of lemma: Given the properties of h(�), we can write h(z) = z + g(z), where g(�) is a continuous
function with g(z) > 0, g0(z) 2 (�1; 0), limz!�1 g(z) = 1, and limz!1 g(z) = 0. Thus, we can write the
truncated expectation E[ eBjb; eB � Bm] as follows:

H(b; Bm) � E[ eBjb; eB � Bm] = Bm + �mg

�
Bm �Bm(b)

�m

�
:

Given (14) and the properties of g(�), we have limb!�1H(b; Bm) = Bm, limb!1H(b; Bm) =1, @H(b;Bm)
@b =

�g0
�
Bm�Bm(b)

�m

�
dBm(b)
db > 0, and @H(b;Bm)

@Bm
= 1 + g0(Bm�Bm(b)

�m
) > 0.

When Bm < C
� , because H(�) is a continuous function in b, the intermediate value theorem implies

that there exists a solution for b, bTm(Bm) 2 (�1;1), to the equation H(b; Bm) = C
� . Because H(�; �) is

monotonically increasing in b, that solution is unique. Thus, in this case,

�E[ eBjb; eB � Bm] � C if and only if b � bTm(Bm);

so the executive�s optimal approval function exists and is uniquely given by (17).
When Bm > C

� , H(b; Bm) >
C
� , for all b 2 (�1;1), so �E[ eBjb; eB � Bm] > C for all b 2 (�1;1),

and the executive approves the proposed rule no matter the realization of b. In this case, then, de�ne
bTm(Bm) = �1, and again the executive has optimal approval behavior given by (17).
Finally, suppose Bm = C

� . To show that the executive�s behavior conforms to (17) in this case, we need
to show that limBm"C�

bTm(Bm) = �1, where bTm(Bm) is the solution for b to the equation H(b; Bm) = C
�

when Bm < C
� . Consider, now, an arbitrary M 2 R, and evaluate H(�; �) at b = �M and Bm = C

� . This
gives us

H(�M;
C

�
) =

C

�
+ �mg

 
C
� �Bm(�M)

�m

!
>
C

�
; (62)

where the inequality follows because g(�) is positive for any value of its argument. The inequality in (62)
implies that there exists " > 0 such that

H(�M;Bm) >
C

�
for all Bm 2

�
C

�
� "; C

�

�
: (63)

Because H(�; �) is monotonically increasing in b, (63) implies that the solution for b to H(b; Bm) = C
� for all

Bm 2
�
C
� � ";

C
�

�
must be less than �M . That is, for any arbitrary M 2 R, there exists " > 0 such that

bTm(Bm) < �M for all Bm 2
�
C
� � ";

C
�

�
. This is precisely the condition that limBm"C�

bTm(Bm) = �1: �

Proof of Proposition OA5. The equilibrium (Bm; �m) satis�es equations (12) and (21). Inverting Bm(�m)
gives us B�1m (Bm) =

k
�Bm�C , and the equilibrium condition can be written as a single equation in a single

unknown, Bm:

B�1m (Bm)� b	�bTm(Bm)�Bm
�b

�
= 0:

Since the regulator will only propose a new rule if B � C
� +

k
��m

� C+k
� , the only pivotal bene�ts that are

candidates for equilibrium are Bm 2
h
C+k
� ;1

�
. Over this range, B�1m (Bm) is continuous, strictly decreasing,

with B�1m (C+k� ) = 1 and limBm!1B�1m (Bm) = 0. Furthermore, as established in Lemma OA2, bTm(
C+k
� ) 2

(�1;1) exists and is unique for Bm < C
� , b

T
m(Bm) = �1 for Bm � C

� , and limBm"C�
bTm(Bm) = �1. It is

also straightforward to show that for Bm < C
� , b

T
m(Bm) is di¤erentiable in Bm, with

dbTm(Bm)
dBm

given by (19).

This, in turn, implies that the function b	� bTm(Bm)�Bm

�b

�
is continuous, limBm!1 b	� bTm(Bm)�Bm

�b

�
= 0 and

b	� bTm(Bm)�Bm

�b

�
= 1 forBm � C

� . In addition, forBm < C
� ,

db	� bTm(Bm)�Bm
�b

�
dBm

= b	0( bTm(Bm)�Bm

�b
)
�
dbTm(Bm)
dBm

� 1
�
<
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0 since from (19), db
T
m(Bm)
dBm

< 0. Thus, b	� bTm(Bm)�Bm

�b

�
is strictly increasing in Bm for Bm � C

� .

Now, if � < C
C+k�, the interval

�
C+k
� ; C�

�
is non-empty. Moreover,

lim
Bm!C+k

�

B�1m (Bm)� b	�bTm(Bm)�Bm
�b

�
= 1� b	 bTm(C+k� )� C+k

�

�b

!
> 0:

lim
Bm!C

�

�
B�1m (Bm)� b	�bTm(Bm)�Bm

�b

��
=

k

� C� � C
� 1 < 0;

where the second inequality follows because � < C
C+k� ,

k
� C
��C

< 1. Since B�1m (Bm) strictly decreases

and b	� bTm(Bm)�Bm

�b

�
strictly increases in Bm over the interval

�
C+k
� ; C�

�
and both functions are continuous,

the intermediate value theorem and the monotonicity of B�1m (Bm) � b	� bTm(Bm)�Bm

�b

�
implies there exists

a unique B�m 2
�
C+k
� ; C�

�
such that B�1m (Bm) = b	� bTm(Bm)�Bm

�b

�
, or equivalently, we will have B�m 2�

C+k
� ; C�

�
and ��m 2 (0; 1) such that the equilibrium conditions (22) and (23) hold. It is then the case that

b�m = bTm(B
�
m) 2 (�1;1). This establishes the �rst part of the proposition.

Suppose, now, � � C
C+k�, or equivalently

C+k
� � C

� . As noted above the only pivotal bene�ts that are

candidates for equilibrium are Bm 2
h
C+k
� ;1

�
, but since C+k

� � C
� , we have

b	� bTm(Bm)�Bm

�b

�
= 1 for all

Bm 2
h
C+k
� ;1

�
. Recalling that B�1m (Bm) is strictly decreasing with B�1m (C+k� ) = 1, there is a unique point

of intersection between b	� bTm(Bm)�Bm

�b

�
and B�1m (Bm) at B�m =

C+k
� and ��m = 1. �

Proof of Lemma OA3. Given Propositions OA4 and OA5, ��n = ��m = 1, b�m = �1, B�m = C+k
� >

C+kr
� = B�n >

C
� . It immediately follows from (27) that �2 = 0, and

EUEm � EUEn = �1 +�3 +�4

= �
Z C+k

�

C+kr
�

[�x� C � kr]f0(x)dx� ka
Z 1

C+k
�

f0(x)dx < 0 (64)

because the second term in (64) is clearly negative, and � � � ensures that over x 2 [C+kr� ; C+k� ], �x�C �
kr > 0, so the �rst term is negative as well. �

Proof of Lemma OA4. When � > C
C+kr

�, then given the implications of Propositions OA4 and OA5,
d[EUE

m�EU
E
n ]

d� = �
R C+k

�
C+kr
�

xf0(x)dx < 0, since ka > 0 and thus C+kr� < C+k
� . �

Proof of Proposition OA6. To prove (1), if EUEm �EUEn < 0 when � = C
C+kr

�, then from Lemma OA4,
it follows that EUEm �EUEn < 0 for all � 2 ( C

C+kr
�,�), and with Lemma OA3, that inequality then extends

to � > �.
To prove (2), if EUEm�EUEn > 0 when � = C

C+kr
�, then since EUEm�EUEn < 0 at � = � and EUEm�EUEn

is continuous in �, the intermediate value theorem implies that there exists a point ���(�) 2 ( C
C+kr

�; �) such
that EUEm�EUEn = 0 at � = ���(�). Furthermore, by Lemma OA4, EUEm�EUEn strictly decreases in � for

� > C
C+kr

�, so ���(�) is unique and thus EUEm �EUEn > 0 for � 2
�

C
C+kr

�; ���(�)
�
and EUEm �EUEn < 0

for � > ���(�).
To derive the expression for ���(�), we rearrange the expression for EUEm � EUEn in (64) and solve for

�, using expressions for truncated expectations for the standard normal distribution. �

Proof of Lemma OA5. We refer to (31) and (33) as incentive compatibility (IC) conditions and (30) and
(32) as individual rationality (IR) conditions. Given these conditions, for the regulator to propose with a
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BCA for some values of B and without a BCA for other values of B, it must be the case that �v > 0. If
�v = 0, then IR condition (30) would be violated. It must also be the case that �v < 1. If �v = 1 then

because E
�
�v(eb)jB� � 1, and k > kr, IC condition (33) cannot hold. Thus, only �v 2 (0; 1) is compatible

with a separating equilibrium.
Furthermore, note that (33) implies that for any B such that a proposal is made with BCA, it must be

the case that h
E
�
�v(eb)jB�� �vi (�B � C) � k � kr = ka > 0:

Because �B > C for any proposal of any kind to be forthcoming, then it must be the case that E
�
�v(eb)jB� >

�v for all B when a proposal with a BCA is submitted. Similarly, (31) implies that for B when a proposal
is made without a BCA, h

E
�
�v(eb)jB�� �vi (�B � C) � ka:

Because �v(b) is nondecreasing in b, it must be that E
�
�v(eb)jB� is nondecreasing in B, since B shifts the dis-

tribution ofeb in the sense of �rst-order stochastic dominance. It then follows that both hE ��v(eb)jB�� �vi (�B�
C)�ka and Eeb

�
�v(eb)jB� (�B�C)�k are strictly increasing in B over the relevant range B > C

� where the

regulator would propose. Thus, there exists a unique value ofB, call itB0, at which
h
E
�
�v(eb)jB0�� �vi (�B0�

C)�ka = 0, and
h
E
�
�v(eb)jB�� �vi (�B�C)�ka ? 0 as B ? B0. Analogously, there exists a unique value

of B, denoted by B00, at which E
�
�v(eb)jB� (�B�C)�k = 0, and E ��v(eb)jB� (�B�C)�k ? 0 as B ? B00.

Given this, we can express the set BNO in which (30) and (31) hold as BNO =
n
BjB � C

� +
kr
��v

; B � B0
o
,

and we can express the set BBCA in which (32) and (33) hold as BBCA = fBjB � B00; B � B0g =
fBjB � maxfB0; B00gg. Given this, if regulator�s strategy satis�es the IC and IR conditions, and the execu-
tive receives a proposal from the regulator accompanied by a BCA with a measured bene�t b, the executive�s
best response would be

�v(b) =

8<: 1 if �E[ eBjb; eB � maxfB0; B00g] > C

2 [0; 1] if �E[ eBjb; eB � maxfB0; B00g] = C
0 otherwise

:

We can use the same logic as in the proof of Lemma OA2 to show that E[ eBjb; eB � maxfB0; B00g] � C
�

is strictly increasing in b. Thus, the executive�s best-response approval rule �v(b) is non-decreasing in b,
consistent with the regulator�s expectations, and it involves a unique threshold bene�t bv (possibly equal to
�1).
Now consider the executive�s optimal approval behavior in a separating equilibrium if it receives a proposal

without a BCA. Because we have shown that �v 2 (0; 1), it must be that if the executive receives a proposal
without a BCA

E[ eBj eB 2 BNO] = C

�
� B0; (65)

where the inequality follows because for all B 2 BNO, B � B0, so E[ eBj eB 2 BNO] � B0.
Now because B 2 BBCA ) B � B0, it follows that E[ eBjb; eB 2 BBCA] > B0. But given (65), we then

have

E[ eBjb; eB 2 BBCA] > C

�
:

This implies that the executive would always approve a proposal with a BCA for any measured bene�t b.
Thus, �v(b) = 1 for all b 2 (�1;1), and the measured bene�t threshold bv = �1.
Given �v(b) = 1 for any b, it is easy to see that B0 = C

� +
ka

�(1��v) and B
00 = C+k

� , and thus
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BNO =

�
BjB 2

�
C

�
+

kr
��v

;
C

�
+

ka
�(1� �v)

��
:

BBCA =

�
BjB � C + k

�
;B � C

�
+

ka
�(1� �v)

�
:

For a separating equilibrium to exist the set BNO must be non-empty, i.e., C� +
kr
��v

< C
� +

ka
�(1��v) , or

�v >
kr
k
: (66)

It follows directly that C� +
ka

�(1��v) �
C+k
� > 0, so BBCA =

n
BjB 2

h
C
� +

ka
�(1��v) ;1

io
. �

Proof of Proposition OA7. Let B+v (�) =
C
� +

ka
�(1��) , B

�
v (�) =

C
� +

kr
�� , and let B(�) � E[ eBj eB 2

[B�v (�); B
+
v (�)]]. We can write the equilibrium condition (36) as

�B(�) = C. (67)

A separating equilibrium exists if (67) holds for some � 2
�
kr
k ; 1

�
.

As a �rst step, note that B(1) = E[ eBj eB 2 [C+kr� ;1)] = B0 + �0h

�
C+kr
� �B0

�0

�
, using the formula for

the one-sided truncation of the normal distribution. Note, too, that B+v (
kr
k ) =

C
� +

ka
�(1� kr

k )
= B�v (

kr
k ) =

C
� +

kr
� kr

k

= C+k
� . Thus, B(krk ) = E[ eBj eB 2 [C+k� ; C+k� ]] = C+k

� . Recalling that ��n(�) � C

B0+�0h

 
C+kr
�

�B0
�0

!
and ��m(�) =

C
C+k�, we have

B(1) =
C

��n(�)
: (68)

B

�
kr
k

�
=

C

��m(�)
: (69)

Suppose that ��n(�) 6= ��m(�). This implies

minf��n(�); ��m(�)g < maxf��n(�); ��m(�)g;

and thus

min

�
B(1); B

�
kr
k

��
< max

�
B(1); B

�
kr
k

��
:

This, in turn, implies the result stated in the proposition, B
min

< B
max

since:

B
min

= min
�2[ krk ;1]

B(�) � min
�
B(1); B

�
kr
k

��
< max

�
B(1); B

�
kr
k

��
� max
�2[ krk ;1]

B(�) = B
max

:

Next, consider any � 2
�

C
B
max ; C

B
min

�
, or equivalently, any C

� 2
�
B
min

; B
max
�
. Because B(�) is contin-

uous on the interval
�
kr
k ; 1

�
, the intermediate value theorem implies that there exists a value �v such that

B(�v) =
C
� . That is, a solution to (67) exists on

�
kr
k ; 1

�
.

Suppose, now, � > C

B
min . Then �B(�) � C > 0 for all � 2

�
kr
k ; 1

�
;and the equilibrium condition (67)
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for a separating equilibrium cannot hold on
�
kr
k ; 1

�
. Likewise, if � < C

B
max , then �B(�) � C < 0 for all

� 2
�
kr
k ; 1

�
, and (67) cannot hold on

�
kr
k ; 1

�
. Thus, if � > C

B
min or if � < C

B
max , a separating equilibrium in

the regulatory proposal subgame with voluntary BCA cannot exist.
To complete the proof, suppose � = C

B
min or � = C

B
max . We will structure the argument for the case

of � = C

B
min , noting that the logic for � = C

B
max is identical. Let �min be a value of � that attains B

min
.

If �min 2 (krk ; 1), then a separating equilibrium exists at � = C

B
min . If either �min = 1 or �min = kr

k , and

a separating equilibrium would not exist for � = C

B
min . In this case of non-existence, we would have to

have B
min

= B(1) or B
min

= B
�
kr
k

�
. But then � = C

B
min =) � = C

B(1)
or � = C

B( krk )
, and from (68) and

(69), it would follow that � = ��n(�) or � = ��m(�). Thus, if
C

B
min = ��n(�) or

C

B
min = ��m(�) a separating

equilibrium does not exist for � = C

B
min . By analogous logic, if C

B
max = ��n(�) or

C
B
max = ��m(�) a separating

equilibrium does not exist for � = C
B
max . Summing up this logic, a separating equilibrium exists for � = C

B
min

unless C

B
min = ��n(�) or

C

B
min = ��m(�), and a separating equilibrium exists for � =

C
B
max unless C

B
max = ��n(�)

or C
B
max = ��m(�). �

Proof of Proposition OA8. The biased BCA can be �de-biased� by subtracting A from the realized
value of eba. Because eba � A is normally distributed with mean B and standard deviation �b, the posterior
distribution of eB conditional on a realization ba�A of the de-biased BCA is normal with variance �2a = �2b�

2
0

�2b+�
2
0

and mean

Ba(b; A) =
�2b

�2b + �
2
0

B0 +
�20

�2b + �
2
0

(bA �A) :

By totally di¤erentiating the expression for bTa (Ba; A) with respect to A, it is straightforward to show that
for any arbitrary pivotal bene�t Ba, bTa (Ba; A) = bTm(Ba)+A. The equilibrium is then the triple (Ba; �a; ba)
that solves then solves

Ba =
C

�
+

k

��a
;

�a = b	�ba �Ba �A
�b

�
;

ba = bTm(Ba +A:

The solution is clearly B�a = B�m, �
�
a = ��m, b

�
a = b�m +A. �

Proof of Lemma OA6.
Su¢ ciency : Because � � � and dBsa(A)

dA < 0,MC(A;�) � 0 for all A 2 (�1;1). To evaluateMB(A;�),
we know Bsa(A) � C+k

� , so if � � �,

Bsa(A) �
C + k

�
� C + k

�
>
C

�
;

and thus the integral in (40) is positive. It follows that MB(A;�) �MC(A;�) > 0 for all A when � � �,
and thus the unique optimum for the executive�s problem is A� =1 and B�sa =

C+k
� .

Necessity : For any arbitrary value of A, let b�(A) be a solution for � to MB(A;�) = MC(A;�). This
solution exists and is unique for the following reasons: (i) We can see directly from (40) and (41) that
MB(A;�)� MC(A;�) is strictly increasing in �. (ii) We just established MB(A;�) �MC(A;�) > 0 for
all A when � � �. (iii) We can see from (40) and (41) that MB(A; 0) < 0 � MC(A; 0) for any A, so
MB(A; 0) �MC(A; 0) < 0. (iv) Given (i), (ii), and (iii), the intermediate value theorem implies that for
any A, there exists a unique solution for � to MB(A;�) = MC(A;�).
To establish necessity, it su¢ ces to show that limA!1 b�(A) = �. Suppose, to the contrary, this is

not the case. Then limA!1 MB(A;�)j�=� 6= limA!1 MC(A;�)j�=� . From (41), MC(A;�)j�=� = 0.
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To obtain a contradiction and establish the result, it su¢ ces to show that limA!1 MB(A;�) = 0 for
any � (thus including � = �). From the de�nition of Bsa(A), we can see that limA!1Bsa(A) =

C+k
� .

Furthermore, since  (�) is the standard normal density function, limA!1  
�
C�A�x
�b

�
= 0. Hence, from

(40), limA!1 MB(A;�) = 0 for any �. This contradicts the implication of the contrapositive assumption,
limA!1 b�(A) 6= �, thus establishing that when � = � the optimal solution to the executive�s problem is
A� =1. Given that A� increases with �, this implies that A�(�) =1 for all � > � as well. �

Proof of Proposition OA10:
Preliminary steps: We begin by noting that xm(�) = k

�BL�C � (1 � q) > �(1 � q). Moreover, if

� < k
2(1�q)BL , then xm(�) > 1 � q: Let us now de�ne two additional objects: xm(�; bL) is the inverse of

�m(b
L; x) with respect to x, and is xm(�; bH) the inverse of �m(bH ; x) with respect to x. We have

xm(�; b
L) =

(1� q)p(�BH � C)� q(1� p)(C � �BL)
p(�BH � C)� (1� p)(C � �BL) =

�E[ eBjbL]� C
�E[ eB]� C :

xm(�; b
H) = �qp(�B

H � C)� (1� q)(1� p)(C � �BL)
p(�BH � C)� (1� p)(C � �BL) = ��E[

eBjbH ]� C
�E[ eB]� C :

Because E[ eBjeb = bL; x] and E[ eBjeb = bH ; x] are strictly decreasing in x, and �m(bL; x) = C

E[ eBjeb=bL;x] and
�m(b

H ; x) = C

E[ eBjeb=bH ;x] are thus strictly increasing in x, it follows that xm(�; bL) and xm(�; bH) are strictly
increasing in �. In fact, xm(�; bL) and xm(�; b

H) are hyperbolas in (�; x) space, with each having an
asymptote toward 1 and �1 at � = �n. Straightforward algebra implies that xm(�; bL)� xm(�; b

H) = 1
for all � 2

�
C
BH ;

C
BL

�
except at � = �n where the di¤erence is not de�ned. Moreover,

xm(�; b
L) > 1� q; � 2

�
C

BH
; �n

�
: (70)

xm(�; b
L) 2 (�1; 1� q)] ; � 2

�
�n;

C

BL

�
: (71)

Analogously,

xm(�; b
H) 2 [�(1� q);1) ; � 2

�
C

BH
; �n

�
: (72)

xm(�; b
H) < �(1� q); � 2

�
�n;

C

BL

�
: (73)

Now, consider the expressions in (44) and in particular the di¤erence between the third expression in (44)
and the last and next-to-last expressions, respectively. We denote these di¤erences �1(x) and �2(x). We
will show that for any x and � such that � � �m(b

L; x)

�1(x) = p

�
2q � 1
q � x

�
(�BH�C)�pk

�
1 +

(1� q � x)(�BH � C)
(q � x) (C � �BL)

�
�
�
�kp

�
1 +

(q + x)(�BH � C)
(1� q + x)(C � �BL)

��
> 0;

and

�2(x) = p

�
2q � 1
q � x

�
(�BH � C)� pk

�
1 +

(1� q � x)(�BH � C)
(q � x) (C � �BL)

�
�
��

p(q + x)(�BH � C)
�(1� p)(1� q + x)(C � �BL)

�
� k
�

(74)

> 0:

For �1(x) we have
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�1(x) > kp

�
�BH � C
C � �BL

��
(q + x)

(1� q + x) �
(1� q � x)
(q � x)

�
> 0,

where the �rst inequality follows because (i) q > 1
2 , (ii) �B

H �C > 0 (iii) q � x > since x � 1� q < q. The

second inequality follows because q+x
(1�q+x) �

(1�q�x)
(q�x) = q2�(1�q2)

(1�q+x)(q�x) =
2q�1

(1�q+x)(q�x) > 0. For �2(x) note that

k � p
�
1 +

(1� q � x)(�BH � C)
(q � x) (C � �BL)

�
k

= k(1� p)
�
1� p

1� p
(1� q � x)(�BH � C)
(q � x) (C � �BL)

�
:

Because �m(bL; x) = C

E[ eBjeb=bL;x] , using the expression (43) for E[ eBjeb = bL; x], we have

p

1� p
(1� q � x)(�m(bL; x)BH � C)
(q � x) (C � �m(bL; x)BL)

= 1;

and thus 1 � p
1�p

(1�q�x)(�BH�C)
(q�x)(C��BL)

> 0 for any x and � such that � < �m(b
L; x) because �BH�C

C��BL is an
increasing function of �. Thus, the term

�pk
�
1 +

(1� q � x) (�BH � C)
(q � x) (C � �BL)

�
� (�k)

in (74) is positive, so

�2(x) > p

�
2q � 1
q � x

�
(�BH � C)�

�
p(q + x)(�BH � C)� (1� p)(1� q + x)(C � �BL)

�
:

Straightforward algebra enables us to rewrite the right-hand side of this expression as

(1� q + x)
q � x) (C � �BL)

�
1� (�B

H � C)
(C � �BL)

p

1� p
(1� q � x)
(q � x) + 1

�
> 0;

where the inequality follows because 1 � p
1�p

(1�q�x)(�BH�C)
(q�x)(C��BL)

> 0 for � < �m(b
L; x), or equivalently, x <

xm(�; b
L). Thus, �2(x) > 0.

Next, consider how the last three expressions in (44) vary with x:

d
h
p
�
2q�1
q�x

�
(�BH � C)� pk

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
i

dx

=
p(2q � 1)(�BH � C)

(q � x)2 +
pk(2q � 1)
(q � x)2

�
�BH � C
C � �BL

�
> 0:

d
h
�kp

�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

�i
dx

= pk
(�BH � C)
(C � �BL)

(2q � 1)
(1� q + x)2 > 0: (75)

and

d
�
p(q + x)(�BH � C) + (1� p)(1� q + x)(�BL � C)� k

�
dx

= p(�BH � C)� (1� p)(C � �BL) T 0 as � T �n (76)

Note, too that for � and x such that � = �m(b
H ; x), then � = C

E[ eBjeb=bH ;x] and from (42), p(q+x)(�BH�C) =

53



(1� p)(1� q + x)(�BL � C), and thus

p(q + x)(�BH � C) + (1� p)(1� q + x)(�BL � C)� k = �k: (77)

Let�s also observe that for � and x such that � < �m(b
H ; x), from (44), EUEa (x) < 0. Given the continuity

of EUEa (x) in x for x > xm(�) (equivalently � > �m(x)), along with (76), (77), it follows that for x > xm(�)
and � 2

�
C
BH ; �n

�
, that EUEa (x) < 0:

Proof of (a): If � 2
�
C+k
BL ;

C
BL +

k
2(1�q)BL

�
, then as noted earlier in the proof, xm(�) > 1� q, which means

that for x 2 [�(1� q); 1� q]

EUEa (x) =

(
�(pBH + (1� p)BL)� C � k � � �m(b

L; x)

p
��

2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�

� � �m(b
L; x)

:

Now, for � 2
�
C
BH ; �n

�
, it is not possible for � � �m(b

L; x) since �n < �m(b
L; x) for all x 2 [�(1� q); 1� q].

Thus, EUEa (x) = p
��

2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�
, which, as we have seen in �preliminary

steps,� is a strictly increasing function, which is maximized at x = 1 � q. If � 2
�
�n;

C
BL

�
, then from (71),

xm(�; b
L) 2 (�1; 1� q)], and thus EUEa (x) can be written

EUEa (x) =

(
�(pBH + (1� p)BL)� C � k x � xm(�; b

L)

p
��

2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�

x � xm(�; b
L)
:

We can see that this function, too, is maximized at x = 1� q.
Proof of (b): If � > C

BL +
k

2(1�q)BL , then �(1 � q) < xm(�) < 1 � q. Because � 2
�
C
BH ; �n

�
, then it is

not possible for � � �m(b
L; x) since �n < �m(b

L; x). Moreover, from (71) and (72), xm(�; bL) > 1� q and
xm(�; b

H) 2 [�(1� q);1). Thus, we can write EUEa (x) as follows:

EUEa (x) =

8>><>>:
p
��

2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�

x � xm(�)

p(q + x)(�BH � C) + (1� p)(1� q + x)(�BL � C)� k x > xm(�); x � xm(b
H ; x)

�kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

�
x > xm(�); x � xm(b

H ; x)

: (78)

This gives us three cases: (i) �(1�q) < xm(�; b
H) < xm(�) < 1�q; (ii) �(1�q) < xm(�) < xm(�; b

H) <
1� q; (iii) �(1� q) < xm(�) < 1� q < xm(�; b

H). Consider each in turn.
Case (i): �(1 � q) < xm(�; b

H) < xm(�) < 1 � q. In this case EUEa (x) jumps downward at xm(�) to
p(q+x)(�BH �C)+ (1�p)(1� q+x)(�BL�C)�k, which as noted in (76) is strictly decreasing in x when
� 2

�
C
BH ; �n

�
. In this circumstance, xm(�) is the unique maximizer of EUEa (x) on [�(1� q); 1� q].

Case (ii): �(1� q) < xm(�) < xm(�; b
H) < 1� q. In this case, EUEa (x) jumps downward to EUE�a (x) �

�kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

�
, which from (75) is strictly increasing at in x, but once x increases beyond

xm(�; b
H), EUEa (x) becomes (q+x)(�B

H�C)+(1�p)(1�q+x)(�BL�C)�k, which is strictly decreasing
in x. Thus, EUE�a (x) attains its maximum at xm(�; bH). In this case, the unique maximizer of EUEa (x) is
either xm(�) or xm(�; bH) depending on whether EUEa (xm(�)) is greater than or less than EU

E
a (xm(�; b

H)).
But as noted in (77), p(q + x)(�BH � C) + (1 � p)(1 � q + x)(�BL � C) � k = �k at � = �m(b

H ; x), or
equivalently, x = xm(�; b

H). Thus, EUE�a (xm(�; b
H)) = �k; and so

EUEa (xm(�))� EUE�a (xm(�; b
H)) = p

8<:
�

2q�1
q�xm(�)

�
(�BH � C)

�
�
1 + (1�q�xm(�))(�BH�C)

(q�xm(�))(C��BL)

�
k

9=;+ k
> k � pk

�
1 +

(1� q � xm(�))(�BH � C)
(q � xm(�)) (C � �BL)

�
> 0;

where the �rst inequality follows because q > 1
2 , and the second inequality follows because, as part of the
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proof above that �2(x) > 0, we showed that k � pk
�
1 + (1�q�x))(�BH�C)

(q�x)(C��BL)

�
> 0 for any x < xm(�; b

L), and

when � 2
�
C
BH ; �n

�
, xm(�) < xm(�; b

L). Thus, when � 2
�
C
BH ; �n

�
and xm(�) < xm(�; b

H) < 1 � q; the
unique optimal solution to the executive�s problem is xm(�).
Case (iii): �(1 � q) < xm(�) < 1 � q < xm(�; b

H). In this case, EUEa (x) jumps downward at xm(�)

to EUEa (x) = �kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

�
, which is strictly increasing in x. In this case, the unique maxi-

mizer of EUEa (x) is either xm(�) or 1 � q depending on whether EUEa (xm(�)) is greater than or less than

�kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

����
x=1�q

. Now �kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

����
x=xm(�;bH)

= �kp
�
1 + (q+x)(�m(b

H ;x)BH�C)
(1�q+(�m(bH ;x)(C��BL)

�
.

Recalling that �m(bH ; x) = C
E[BjbH ;x] , (42) implies

(q + x)(�m(b
H ; x)BH � C)

(1� q + (�m(bH ; x)(C � �BL)
=
1� p
p

;

and thus

�kp
�
1 +

(q + x)(�BH � C)
(1� q + x)(C � �BL)

�����
x=xm(�;bH)

= �k:

Because�kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

�
increases in x and we have supposed 1�q < xm(�; b

H), then �kp
�
1 + (q+x)(�BH�C)

(1�q+x)(C��BL)

����
x=1�q

<

�k. Thus

EUEa (xm(�))� �kp
�
1 +

(q + x)(�BH � C)
(1� q + x)(C � �BL)

�����
x=1�q

> EUEa (xm(�)) + k;

= p

��
2q � 1

q � xm(�)

�
(�BH � C)�

�
1 +

(1� q � xm(�))(�BH � C)
(q � xm(�)) (C � �BL)

�
k

�
+ k

> k � pk
�
1 +

(1� q � xm(�))(�BH � C)
(q � xm(�)) (C � �BL)

�
> 0;

where the second and third inequalities follow from the same arguments we made to show that EUE+a (x)�
EUE�a (xm(�; b

H)) > 0 in case (ii). Thus, when � 2
�
C
BH ; �n

�
, xm(�) < 1� q < xm(�; b

H), EUEa (xm(�))�
EUEa (1� q) > 0, so xm(�) is the unique maximizer of EUEa (x) on [�(1� q); 1� q].
Summing up, we have thus established in all possible cases that can arise when � 2

�
C
BH ; �n

�
, xm(�) is

the unique maximizer of EUEa (x) on [�(1� q); 1� q].
Proof of (c): If � = �n, it is necessarily the case that �m(bH ; x) < � < �m(b

L; x) for any x. Thus, at xm(�),
EUEa (x) jumps downward to EU

E
a (x) = p(q+ x)(�BH �C) + (1� p)(1� q+ x)(�BL �C)� k. This is �at

in x when � = �n. Thus, the unique solution to the executive�s optimization problem must be x = xm(�).
Proof of (d): As before, � > C

BL +
k

2(1�q)BL , �(1� q) < xm(�) < 1� q. Because � 2
�
�n;

C
BL

�
, then it is

not possible for � � �m(b
H ; x) since �m(bH ; x) < �n for all x. Moreover, from (73), xm(�; bH) < �(1� q),

while from (71), xm(�; bL) < 1� q. Thus, we can write EUEa (x) as

EUEa (x) =

8>>>><>>>>:
�(pBH + (1� p)BL)� C � k x � xm(�); x � xm(�; b

L)

p
��

2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�

x � xm(�); x � xm(�; b
L)

�(pBH + (1� p)BL)� C � k x > xm(�); x � xm(�; b
L)

p(q + x)(�BH � C) + (1� p)(1� q + x)(�BL � C)� k x > xm(�); x � xm(�; b
L)

:

Thus we have three relevant cases: (i) xm(�; bL) < �(1� q) < xm(�) < 1� q (ii) �(1� q) < xm(�; b
L) <

xm(�) < 1� q; (iii) �(1� q) < xm(�) < xm(�; b
L) < 1� q.
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Case (i): xm(�; bL) < �(1� q) < xm(�) < 1� q. In this case

EUEa (x) = p

��
2q � 1
q � x

�
(�BH � C)�

�
1 +

(1� q � x)(�BH � C)
(q � x) (C � �BL)

�
k

�
;

which strictly increases up to xm(�). It then jumps down and becomes EUEa (x) = p(q + x)(�BH � C) +
(1� p)(1� q+x)(�BL�C)� k, which is an increasing function when � 2

�
�n;

C
BL

�
. Thus there is a unique

optimum, either at EUEa (xm(�)) = p
��

2q�1
q�xm(�)

�
(�BH � C)�

�
1 + (1�q�xm(�))(�BH�C)

(q�xm(�))(C��BL)

�
k
�
or EUEa (1 �

q) = p(q+1�q)(�BH�C)+(1�p)(1�q+1�q)(�BL�C)�k = p(�BH�C)�(1�p)2(1�q)(C��BL)�k,
which ever is bigger:
Case (ii): �(1�q) < xm(�; b

L) < xm(�) < 1�q. In this circumstance, EUEa (x) is initially �at at �(pBH+
(1�p)BL)�C�k along [�(1�q); xm(�; bL)]. At xm(�; bL), EUEa (x) becomes p

��
2q�1
q�x

�
(�BH � C)�

�
1 + (1�q�x)(�BH�C)

(q�x)(C��BL)

�
k
�

and begins to increase. Once it reaches xm(�), EUEa (x) jumps down and becomes EU
E
a (x) = p(q+x)(�BH�

C) + (1 � p)(1 � q + x)(�BL � C) � k, which is an increasing function when � 2
�
�n;

C
BL

�
. Thus there is

a unique optimum, either at EUEa (xm(�)) = p
��

2q�1
q�xm(�)

�
(�BH � C)�

�
1 + (1�q�xm(�))(�BH�C)

(q�xm(�))(C��BL)

�
k
�
or

EUEa (1� q) = p(�BH � C)� (1� p)2(1� q)(C � �BL)� k, which ever is bigger:
Case (iii): �(1�q) < xm(�) < xm(�; b

L) � 1�q. In this case, EUEa (x) is �at at �(pBH+(1�p)BL)�C�k
all along [�(1 � q); xm(�; b

L)]. Once it reaches xm(�), it remains �at (since xm(�) < xm(�; b
L)) until it

reaches xm(�; bL). At that point EUEa (x) becomes p(q+x)(�B
H�C)+(1�p)(1�q+x)(�BL�C)�k, which

strictly increases in x until x = 1 � q. Thus, in this case, unique solution to the executive�s optimization
problem must be x = 1�q. Notice that xm(�; bL) 2 (xm(�); 1�q) if and only if � 2

�
�m(b

L; xm(�));
C
BL

�
.�

Proof of Corollary 1. The result follows from parts (c) and (d) of Proposition OA10, recognizing that
� > �m = C

BL +
k

(1�q)BL implies � > C
BL +

k
2(1�q)BL .

Proof of Proposition OA11.
Because E[�f (eb)jBL](�BL � C) � k < 0 (since �BL � C < 0), the executive prefers that a low-type

regulator not propose, i.e., ��f (B
L) = 0. The executive can implement ��f (B

L) = 0 by replacing (46) with
the constraint �

(1� q)�f (bH) + q�f (bL)
� �
�BL � C

�
� k � 0:

We solve the executive�s problem conditional on a �xed �f (BH) 2 (0; 1] and return later and �nd its
optimal value. We can restate the executive�s problem as

max
�f (bH);�f (bH)

p
�
�f (B

H)
��
q�f (b

H) + (1� q)�f (bL)
�
(�BH � C)� k

	�
;

subject to:
�
(1� q)�f (bH) + q�f (bL)

� �
�BL � C

�
� k � 0 (79)

�f (b
H) 2 [0; 1]; �f (bH) 2 [0; 1]: (80)

Because �BH � C > 0, the executive�s objective function is strictly increasing in �f (bH) and �f (bL), and
ideally, ignoring (79), it would want to set �f (bH) = �f (b

L) = 1. Notice that it can do this when � � C+k
BL .

In this case, (79) is satis�ed when �f (bH) = �f (b
L) = 1.

Continuing to hold �f (BH) 2 (0; 1] �xed, now suppose � > C+k
BL . In this case, �f (bH) = �f (b

L) = 1
is no longer feasible� (79) is violated. Thus, the executive must reduce �f (bH) below 1 or �f (bL) below 1
or both. Let us �rst argue that we cannot have �f (bH) 2 (0; 1) and �f (bL) 2 (0; 1). To see why, form the
Lagrangian for the executive�s problem and di¤erentiate with respect to �f (bH) and �f (bL):

L = p
�
�f (B

H)
��
q�f (b

H) + (1� q)�f (bL)
�
(�BH � C)� k

	�
� �

��
(1� q)�f (bH) + q�f (bL)

� �
�BL � C

�
� k
	

� �1H(�f (bH)� 1) + �0H�f (bH)� �1L(�f (bL)� 1) + �0L�f (bL);

where � is the multiplier for (79) and �1H ; �0H ; �1L; �0L are the multipliers for the constraints in (80). If
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these latter constraints are all slack then

@L
@�f (bH)

= 0) p�f (B
H)q(�BH � C) = �(1� q)

�
�BL � C

�
@L

@�f (bL)
= 0) p�f (B

H)(1� q)(�BH � C) = �q
�
�BL � C

�
;

which in turn implies � = p�f (B
H)q(�BH�C)

(1�q)(�BL�C) =
p�f (B

H)(1�q)(�BH�C)
q(�BL�C) . But this cannot hold because q

1�q >
1�q
q . By similar reasoning, we can rule out the possibility that �f (b

H) = 0 and �f (bL) 2 (0; 1]. It is also
straightforward to rule out �f (bH) = 0 and �f (bL) = 0. Thus, when � > C+k

BL , we have three possibilities for

the executive�s optimum: (i) set �f (bH) = 1 and reduce �f (bL) below 1; (ii) set �f (bH) < 1, while reducing
�f (b

L) to 0; (iii) set �f (bH) < 1 while keeping �f (bL) = 1. We now argue that possibility (iii) cannot be
optimal, while possibilities (i) and (ii) constitute the optimal solution, depending on parameter values.
Let us now argue that we will reduce �f (bL) as much as we can while holding �f (bH) = 1. Suppose

we reduce �f (bL) by �L (from 1 to 1 � �L) by the smallest amount we can consistent with incentive
compatibility. That is, we would chose �L so that (79) just holds with �f (bH) = 1:

[(1� q) + q(1��L)]
�
�BL � C

�
= k;

or

�L = 1�
k

q (�BL � C) +
(1� q)
q

:

Now, suppose instead, we hold �f (bL) = 1 and reduce �f (bH) by �H (from 1 to 1��H) so that (79) just
holds:

[(1� q)(1��H) + q]
�
�BL � C

�
= k;

or

�H = 1�
k

(1� q) (�BL � C) +
q

1� q :

Taking the di¤erence

�H ��L =
�
1� k

(1� q) (�BL � C) +
q

1� q

�
�
�
1� k

q (�BL � C) +
(1� q)
q

�
=

2q � 1
q(1� q)

�
1� k

(�BL � C)

�
> 0;

because q > 1
2 and we are in the range where � >

C+k
BL . Now, with perturbation �L, the objective function

then goes down by
�EUEL = p�f (B

H)(1� q)(�BH � C)�L; (81)

while with perturbation �H , the objective function goes down by

�EUEH = p�f (B
H)q(�BH � C)�H :

Because �H > �L and q > 1 � q, the objective function goes down more by perturbing �f (bH) downward
than by perturbing �f (bL) downward. Thus, the best thing for the executive to do is to hold �f (bH) = 1
and reduce �f (bL) by just enough so that (79) holds as an equality, i.e.,

�f (b
L) =

k

q (�BL � C) �
(1� q)
q

:
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Now, this will be feasible if and only if �f (bL) � 0, or

� � �m =
k

(1� q)BL +
C

BL
:

Thus, when � 2
�
C+k
BL ; �m

�
, the executive�s optimal solution is

�f (b
H) = 1;

�f (b
L) =

k

q (�BL � C) �
(1� q)
q

:

Now, when � > �m, we will have reduced �f (b
L) all the way to zero, and the only way to maintain incentive

compatibility is to reduce �f (bH) so that (79) holds as an equality, i.e.,

�f (b
H) =

k

(1� q) (�BL � C) :

Summarizing, holding �f (BH) 2 (0; 1] �xed, the solution to the executive�s problem is

��f (b
H) =

8<:
1 � � C+k

BL

1 � 2
�
C+k
BL ; �m

�
k

(1�q)(�BL�C) � � �m

: (82)

��f (b
L) =

8><>:
1 � � C+k

BL

k
q(�BL�C) �

(1�q)
q � 2

�
C+k
BL ; �m

�
0 � � �m

: (83)

Therefore

E
h
��f (
eb)jBH)i =

8><>:
1 � � C+k

BL :

q + (1� q)
h

k
q(�BL�C) �

(1�q)
q

i
� 2

�
C+k
BL ; �m

�
:

q k
(1�q)(�BL�C) � � �m:

(84)

The executive�s maximized welfare, conditional on �f (BH) 2 (0; 1], is

EUEf (�f (B
H)) = p�f (B

H)
n
E
h
��f (
eb)jBH)i (�BH � C)� ko : (85)

We can use this to determine the optimal value of �f (BH). Note that a value of �f (BH) = 0 can be
implemented by setting ��f (b

H) = ��f (b
L) = 0. Also note that a value of �f (BH) = 1 can be implemented by

using the approval probabilities in (82) and (83). This is because these solutions satisfy (79) as an equality,
which in turn implies that the approval probabilities in (82) and (83) are such that E[��f (eb)jBH ](�BH �
C)� k > 0. From (85), we then have.

��f (B
H) =

(
1 � � C

BH +
k

E[��f (
eb)jBH ]BH

0 otherwise
:

�
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Figure OA1: When � > C+k
BH and ka > 0, there are nine cases for �E(�; �):
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Figure OA2: The three components of deadweight loss to the executive when it does not use BCA: losses
from type 1 and type 2 errors and the loss from additional proposal costs. The �gure depicts the case in
which � = 0:25, with all other parameters set at baseline levels.
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Figure OA3: The decomposition terms �1, �2;�3, and �4 for the change in the executive�s welfare due
to the use of BCA. The �gure illustrates the case in which � = 0:25 and all other parameters are at their
baseline values.
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Figure OA4: The right-hand panel illustrates the equilibria with and without BCA for the baseline para-
meterization (� = 0:50 and all other parameters are set to their baseline levels.) It illustrates a case in
which BCA improves selection. The left-hand panel illustrates the equilibria when � = 0:25 and all other
parameters set to their baseline levels. It illustrates a case in whch BCA worsens selection.

Figure OA5: Separating equilibrium under voluntary BCA.
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Figure OA6: Distribution of EUEm � EUEn across all parameterizations for various values of the noisiness of
BCA, �b.

Figure OA7: Distribution of EUEm � EUEn across all parameterizations for various values of the imprecision
of the executive�s priors, �0.
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Figure OA8: EUEm � EUEn for various values of the regulation-aversion indices, bF0 �C� � and bF0 �C+k� �
, of

the executive and regulator. All parameters vary over their entire ranges.
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Figure OA9: EUEm � EUEn for various values of the regulation-aversion indices, bF0 �C� � and bF0 �C+k� �
, for

�b = 5; 100, and 1; 000. All other parameters vary over their entire ranges.
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Figure OA10: Welfare decomposition for � = 0:3375, B0 = $450; $150; $1; 000 and all other parameter values
at baseline levels.
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Figure OA11: The top panel shows the executive�s optimal bias A� as a function of the executive�s
regulation-sympathy index. (This constitutes the horizontal axis for the other two panels, too.) The
middle panel plots the executive�s prior probability of approving a regulation using strict BCA with bias,R1
B�
sa

b	�C�A��x
�b

�
f0(x)dx. The bottom panel shows the executive�s gain from bias, EUEsa� EUEm, relative

to a discretionary BCA mandate.
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